Читаем Нестандартные задачи по математике в 4 классе полностью

На первое место можно поставить любую из пяти цифр. На второе — тоже любую из пяти цифр. Значит, первые два места можно заполнить 5 · 5 = 25 способами. В любом из этих случаев можно на третье место поставить любую из пяти цифр. Поэтому всего таких чисел 25 · 5 = 125 чисел.

Ответ: 125.

Заметим, что если эта задача учащимся трудна, можно заменить в ней данные, дав задачу в такой, например, редакции: Сколько существует трехзначных чисел с цифрами от 1 до 3? Тогда ответ 27, и все числа можно выписать: 111, 112, 113, 121, 122, 123 и т. д.


Задача 47.Этими кубиками написано число 7;

Какие числа надо написать на гранях двух кубиков, чтобы получился календарь, то есть чтобы можно было писать кубиками все числа от 01 до 31?


Цифру 1 надо иметь на обоих кубиках, чтобы писать 11. Точно так же нужно иметь на обоих кубиках 2, чтобы писать 22. На обоих кубиках нужен и нуль, чтобы писать 01, 02…, 09. Из 12 граней двух кубиков остаются свободными 6 граней, на которых надо разместить 7 цифр: 3, 4, 5, 6, 7, 8, 9. Задача кажется неразрешимой. Однако, нам не нужна девятка: ее заменяет перевернутая шестерка

Ответ: На одном кубике надо написать 0, 1, 2, 3, 4 и 5, на другом 0, 1, 2, 6, 7 и 8.


Задача 48.В левом нижнем углу доски 6x7 стоит ферзь. Два игрока по очереди ходят им на любое число полей вправо, вверх или вправо-вверх по диагонали. Побеждает тот, кто попадет ферзем в правый верхний угол доски. Тебе разрешается начать игру или предоставить партнеру право первого хода. Как ты будешь играть?


Суть игры в том, чтобы ходить ферзем на выгодные поля и не ходить на невыгодные. Изучим с этой точки зрения нашу доску. Поле f7 — выгодное. Значит, поля, отмеченные знаком минус на рисунке — невыгодные (если мы попадем своим ходом на одно из них, противник немедленно пойдет на f7:

Значит, поля d6 и е5 — выгодные (если мы попадем своим ходом на одно из них, противник с него попадет только на невыгодное поле). Рассуждая таким образом, можно последовательно разметить всю доску, ставя плюс в выгодные поля и минус в невыгодные.

Ответ: Нужно начинать первым, ходить первым ходом на а4 или е5.


Задача 49.Продолжи последовательность: 10, 200, 3000…


Каждое следующее число последовательности получается из предыдущего увеличением на 1 первой цифры и увеличением на единицу числа нулей.

Ответ: 10, 200, 3000, 40000, 500000…


Задача 50.Если считать этаж, на котором живет Катя, сверху, то получится вшестеро больше, чем если считать снизу. На каком этаже живет Катя, если в ее доме больше 10 и меньше 20 этажей?


Так как в доме меньше 20 этажей, то сверху можно насчитать либо 6, либо 12, либо 18 этажей (ведь это число делится на 6). Если сверху насчитывается 6 этажей, то снизу 1 этаж, и этажей в доме меньше 10, что противоречит условию. Если сверху 12 этажей, то снизу 2, то есть Катя живет на втором этаже, а над ней еще 11 этажей, и вместе это больше 10 и меньше 20, что соответствует условию. Наконец, если сверху 18 этажей, то снизу 3 этажа, Катя живет на 3 этаже, а над ней еще 17 этажей, то есть всего в доме 20 этажей, что противоречит условию.

Ответ: На третьем.


51 - 60

Задача 51.Известно, что а — b = 29. Чему равно (а — 3) — b?


Надо попросить детей придумать сюжет задачи на эту тему.

Ответ: 26.


Задача 52.Эту фигуру нужно обвести карандашом, не отрывая его от бумаги и не проводя никакую линию дважды:

С какой точки можно начать обводку?


Начинать можно из точки, в которой сходится нечетное число путей.

Ответ: С точки А или точки В.


Перейти на страницу:

Похожие книги