Рис. 4. Дисбаланс между бластической (выработка) и кластической (резорбция) сигнализацией является первопричиной таких заболеваний, как остеопороз, рак и болезнь Альцгеймера.
Нарушение важного физиологического баланса происходит не только в головном мозге. Именно это служит первопричиной ряда заболеваний, включая остеопороз – потерю костной массы, наблюдающуюся у пожилых людей (особенно это заболевание распространено среди женщин). При остеопорозе возникает дисбаланс между формированием костей, которое происходит при участии клеток-остеобластов, и костной резорбцией, за которую отвечают клетки-остеокласты.
Это то же самое, что затеять дома ремонт и нанять две команды мастеров: одну – для сноса, а другую – для строительства. Представьте, что произойдет, если первая бригада будет исправно приходить на работу и крушить все кувалдой, а вторая – отлынивать. Ваш дом скоро превратится в руины. Именно это происходит при остеопорозе: остеобластическая активность отстает от остеокластической (деградационной). Вы теряете костную массу, в результате повышается риск развития остеопороза и получения опасных для жизни переломов.
Мы выяснили, что подобное происходит при болезни Альцгеймера. Только вместо костей мы имеем дело с синапсами. Процесс разрушения синапсов (при участии вредоносного квартета) начинает преобладать над процессами их формирования и поддержания (работа спасительного дуэта). Иными словами, синаптокластическая сигнализация заглушает синаптобластическую. Теперь нам нужно было выявить, какие факторы определяют дисбаланс между формированием и разрушением.
Бешеные коровы и вампиры
Оказывается, способ разрезания APP – в трех участках с образованием провоцирующего болезнь Альцгеймера квартета или в одном участке с образованием питающего нейроны дуэта – определяется, среди прочего, молекулой, которая связывается с предшественником бета-амилоида. Если APP захватывает молекулу под названием нетрин-1 («
Если APP захватывает бета-амилоид, то он режется в трех участках и в результате получается квартет – виновник болезни Альцгеймера. Этот квартет, как вы помните, уже содержит бета-амилоид. То есть получается следующее: когда бета-амилоид, который выходит из лона APP, связывается с APP, то заставляет его вырабатывать больше бета-амилоида!
Рис. 5. APP (предшественник бета-амилоида) может способствовать росту нейритов и укреплению синапсов, а вместе с тем формированию и поддержанию памяти или ретракции данных областей и, соответственно, потере памяти. Когда нетрин-1 связывается с APP, происходит развитие, когда пептид Aβ связывается с APP, происходит ретракция.
Вам, наверное, интересно знать, откуда вообще берется бета-амилоид. Это напоминает извечный вопрос о курице и яйце: нам нужен бета-амилоид, чтобы разрезать APP соответствующим образом и получить бета-амилоид. Однако не стоит забывать, что APP – рецептор зависимости, поэтому, чтобы спровоцировать выработку бета-амилоида, достаточно просто убрать трофическую поддержку, такую как нетрин-1.
Тот факт, что бета-амилоид заставляет APP производить больше бета-амилоида, свидетельствует о его прионных свойствах. Подобно прионам в организме бешеных коров бета-амилоид не нуждается в генетическом материале для воспроизведения себе подобных (именно так клетки синтезируют все другие белки). Они, как крошечные вампиры, «кусают» рецепторы APP и создают новых вампиров.
Вместе APP и бета-амилоид «затягивают» так называемую прионную петлю. По принципу порочного круга происходит непрерывное образование бета-амилоида, разрушающего нейроны и синапсы. Вот почему протокол ReCODE в первую очередь направлен на восстановление баланса APP за счет сокращения образования бета-амилоида (синаптокластическое расщепление) и увеличения доли синаптобластических пептидов sAPPα и αCTF.
Давайте подведем итоги. У нейронов есть рецепторы под названием APP. Когда APP захватывает молекулу нетрин-1, плавающую во внеклеточной среде, он посылает сигнал, который позволяет нейрону оставаться здоровым и функциональным. Когда APP не удается захватить нетрин-1 и он испытывает нехватку трофической поддержки, то заставляет нейроны совершать самоубийство. Захват молекул оказывает двойной эффект на предшественника бета-амилоида: когда рецептор APP захватывает молекулу бета-амилоида, запускается каскад биохимических реакций, в результате которых он разрезается таким образом, что на свет появляется новый бета-амилоид. Молекул бета-амилоида становится больше, чем молекул нетрина-1. Соответственно, вероятность захвата бета-амилоида рецептором APP постепенно возрастает. APP перестает рассылать нейронам и синапсам сообщения: «Будьте живы и здоровы», а вместо этого толкает их на смерть.