Лучи эти могли быть потоком частиц, а могли быть и волнами неизвестного до сих пор сорта. Не противоречило опыту и предположение, что лучи принадлежат к семейству электромагнитных волн, то есть все же находятся в родстве со световыми волнами. Для этого надо было предположить лишь, что длина волны новых лучей значительно короче лучей световых. Сам Рентген отсутствие отклонения новых лучей от прямолинейности – отсутствие дифракции – объяснял тем, что они являются продольными электромагнитными волнами.
Можно ли измерять расстояния между атомами?
Мне придётся ещё раз отклониться от главной темы книги и напомнить читателю, что такое дифракция и как физики измеряют длину волны.
Пусть какое-то неизвестное излучение падает на некий «частокол», представляющий собой правильное чередование щелей и непрозрачных участков. Просочившись сквозь щели, оно продолжает свой путь дальше.
В зависимости от того, что были за лучи и что представлял собой забор, возможны такие варианты поведения: лучи идут прямо; лучи отклоняются во все стороны; лучи отклоняются только в некоторых строго определённых направлениях. В первом случае говорят, что лучи не рассеиваются «частоколом», во втором – что они рассеиваются; в третьем – что имеет место явление дифракции.
Если на пути лучей, прошедших сквозь такую преграду, поставить фотографическую пластинку, то после проявления её в первом случае мы увидим только следы неотклоненного луча; во втором – обнаружится размытый след; а в третьем, самом интересном случае, рядом со следом прямого луча мы должны обнаружить на фотопластинке отдельные резкие следы отклонённых лучей. Это и есть дифракционная картина.
Если явление дифракции неизвестного излучения будет обнаружено, то этим будет доказана его волновая природа. Из данных опыта несложными рассуждениями, к которым мы сейчас перейдём, можно вычислить длину волны излучения.
Знакомство с дифракцией видимого света происходит в школе. Там вам, читатель, показывали маленькое стёклышко, в центре которого матовое прямоугольное пятно. Это и есть дифракционная решётка. На стёклышке нанесено множество параллельных штрихов. Расстояния между штрихами (прозрачная часть) совсем малые – доли микрона. Сами штрихи – непрозрачная часть.
Направим на решётку параллельный пучок лучей света и посмотрим, что произойдёт.
На экране, установленном на пути прошедшего через решётку луча, возникает красивая цветная картина. Ярче всего виден, разумеется, след неотклоненного луча, а по бокам от него возникают радужные полосы. Их несколько. Та полоса, что ближе всего к неотклоненному лучу, называется спектром первого порядка.
А теперь поставим на пути первичного луча цветной фильтр. Картина теряет в красоте, но выигрывает в ясности: на экране видны след неотклоненного луча и чёткие следы отклонённых одноцветных лучей, которые расположились симметрично – вправо и влево от прямого направления на одинаковые углы.
Угол отклонения первого из дифрагированных лучей несёт в себе информацию о длине волны света. Зная расстояние от решётки до экрана и измерив, на сколько сантиметров пятно отклонённого луча отстоит от центрального, мы без труда по формуле тангенса вычислим значение этого угла.
А как, зная измеренный угол, вычислить длину волны света? На этот вопрос отвечает приведённая здесь простенькая схема. Отклонённые лучи возникают лишь в тех направлениях, где волны, выходящие из разных щелей, распространяются в одной фазе. То есть горбы всех одиночных волн должны образовать плоский фронт. Первый отклонённый луч возникнет тогда, когда волны, исходящие из каждой щели, будут отставать от соседок на одну свою длину.
Из схемы ясно, что три величины жёстко связаны между собой: расстояние между щелями, длина волны и угол отклонения. У меня был соблазн написать простое тригонометрическое уравнение, которое связывает эти три величины, но я воздержался. Главное, чтобы читателю было понятно следующее: из непосредственно измеряемых величин (расстояние между щелями и угол отклонения) может быть вычислена длина волны излучения.
Нетрудно сообразить (для этого надо лишь внимательно посмотреть на рисунок), что отклонение будет тем меньше, чем меньше отношение длины волны к расстоянию между щелями.
Значит, результат дифракционного эксперимента – его удача или провал – зависят от соотношения между длиной волны и расстоянием между щелями. Если расстояние между щелями «частокола» много больше длины волны, то мы не заметим дифракции: все отклонённые лучи ничтожно мало отойдут от прямого пути. Напротив, если расстояние между щелями значительно меньше длины волны, то обнаружится рассеяние, но дифракции опять не будет, хотя уже по другой причине. В первом случае распространение излучения происходит так, словно «частокол» и не стоит на дороге луча, а во втором – решётка щелей равноценна одной щели.