Читаем Невероятно - не факт полностью

Здесь полная аналогия с игрой в рулетку, когда сравнивается стратегия двух игроков, один из которых ставит только на «красное» и «черное», а другой только на «номера». У первого вероятность выигрыша равна 1/2, а у второго – 1/36. Первый будет выигрывать часто, но мало; второй редко, но большими суммами. В конечном счете выигрывает зеро, то есть оба игрока проиграют.

Из сказанного следует, что вмешательство, даже самое маленькое, случайности уже делает единичное событие, строго говоря, непредсказуемым, а всю область явлений позволяет зачислить по ведомству проблемы вероятности. К этому важному заключению мы еще вернемся, когда вместо карт, рулетки и бегов займемся поведением молекул.

Закон, найденный Бернулли

Вероятность того, что при случайном броске монета ляжет гербом кверху равняется 1/2. Значит, зная вероятность события, мы можем предсказать, что при стократном бросании монеты герб появится 50 раз? Не обязательно точно 50. Но что-нибудь около этого непременно.

Предсказания, использующие знание вероятности события, носят приблизительный характер, если число событий невелико. Однако эти предсказания становятся тем точнее, чем длиннее серия событий.

Заслуга этого открытия принадлежит Якову Бернулли (1654–1705). Он был замечательным исследователем. Конечно, и Галилей, и Паскаль, и другие мыслители, которые вводили вероятность как дробь, равную отношению благоприятных случаев к общему числу возможных вариантов, превосходно понимали, что на опыте предсказания комбинаторных подсчетов осуществляются приблизительно. Им было ясно, что число бросков, при которых монета ляжет гербом кверху, не равно в точности, а лишь близко к половине от общего числа бросков, а число бросков кубика, приводящих к шестерке сверху, не равно в точности, а лишь близко к 1/6 от общего числа бросков. Но насколько близко, сказать они не могли. На этот вопрос ответ дал Яков Бернулли. Открытый им закон, который мы называем «законом больших чисел», лежит в основе статистической физики; без этого закона не могут обойтись статистики ни одной области знания.

Сущность этого закона весьма проста.

Положим, «честная» монета бросалась тысячу раз, потом еще тысячу раз, потом еще… И так много раз. Разумеется, герб редко появится ровно 500 раз. Будут серии, где отношение числа появляющихся гербов к 1000 будет совсем близко к 1/2, и такие серии, где отклонение будет довольно значительным. Каким закономерностям подчиняется это отклонение от теоретической вероятности? И – самое главное – как будет меняться отклонение от вычисленной вероятности с увеличением числа бросков?

Яков Бернулли строго доказал, что разности отношения удачных бросков к общему числу бросков и теоретического числа вероятности (в нашем примере – отклонения от 1/2) уменьшаются с возрастанием числа бросков, и эти отклонения могут быть сделаны меньше любого малого, наперед заданного числа.

Отношение числа удачных бросков к общему числу бросков называют «частотой». Закон больших чисел можно сформулировать и так: по мере увеличения числа опытов «частота» события сближается со значением вероятности.

Отклонения «частоты» от вероятности при большом числе бросков, измеряемом тысячами, становятся совсем незначительными. О результатах своих немудреных опытов по бросанию монеты поведали миру математики XVIII века. В одном таком опыте герб выпал 2028 раз при общем числе бросков 4000; когда число бросков достигло 12 000, то оказалось, что герб появился 6019 раз; наконец, при числе бросков 24 000 герб выпал 12 012. Частоты при этом изменялись так: 0,507; 0,5016 и 0,5005.

Однако надо ясно представлять себе, что это сближение «частоты» с вероятностью есть лишь общая тенденция. Может случиться, что отклонения от вероятности для меньшего числа опытов окажутся такими же или даже меньшими, как и отклонения при большом числе опытов. Вообще же эти отклонения от предельных законов вероятности носят также статистический характер.

Часть вторая

Дела житейские

Вероятность, которой можно и должно пренебречь

Любители парадоксов часто пытаются убедить читателя в противоречиях, которые якобы часто встречаются в проблемах вероятности.

Парадоксы возникают обычно в том случае, если игрой слов пытаются подменить практическую постановку вопроса. Вот пример.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»
Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»

Работа над пьесой и спектаклем «Список благодеяний» Ю. Олеши и Вс. Мейерхольда пришлась на годы «великого перелома» (1929–1931). В книге рассказана история замысла Олеши и многочисленные цензурные приключения вещи, в результате которых смысл пьесы существенно изменился. Важнейшую часть книги составляют обнаруженные в архиве Олеши черновые варианты и ранняя редакция «Списка» (первоначально «Исповедь»), а также уникальные материалы архива Мейерхольда, дающие возможность оценить новаторство его режиссерской технологии. Публикуются также стенограммы общественных диспутов вокруг «Списка благодеяний», накал которых сравним со спорами в связи с «Днями Турбиных» М. А. Булгакова во МХАТе. Совместная работа двух замечательных художников позволяет автору коснуться ряда центральных мировоззренческих вопросов российской интеллигенции на рубеже эпох.

Виолетта Владимировна Гудкова

Драматургия / Критика / Научная литература / Стихи и поэзия / Документальное
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука