Читаем Невероятно - не факт полностью

Задачи статистики (так называются не только люди, но и область деятельности) разнообразны и обширны. На десятках тысяч библиографических карточек приведены данные о промышленном производстве, о народном образовании, о смертности населения, о функционировании поликлиник и больниц, об автомобильных катастрофах, о посещаемости кинофильмов и бог весть еще о чем. Статистиков интересуют самые разные вещи: динамика роста тех или иных показателей, сопоставление данных по значению какого-либо параметра в разные времена года, или в разные часы дня, или среди мужчин и женщин, или среди лиц разного возраста.

Особое место занимают в статистике измерения средних значений и отклонений от средних. Весьма распространены измерения роста и веса. Вес цыплят, которыми торгует птицеферма, интересен потому, что характеризует ее работу; рост людей интересен для швейной промышленности, выпускающей одежду ог 46-го до 56-го размеров, и т.д. Так как все это известно читателю из газет и радиопередач, приводящих всевозможные числа, то перейдем к нашей теме, а именно, к проявлению во всей этой массе чисел законов случая.

Один из скучных рисунков, фигурирующих в сочинениях по статистике, нам придется привести. Мы с художником долго ломали голову над тем, как сделать это масштабное построение более приемлемым в книге серии «Эврика». Результат творчества изображен на странице 71 [ссылка]. Рисунок показывает диаграмму и кривую, которая носит название кривой статистического распределения.

Чтобы рисунок лучше рассмотреть, поверните, пожалуйста, книжку на 90 градусов. Правда, новобранцы очутились в лежачем положении. Но, ей-богу, ничего более толкового не придумаешь. Теперь (в повернутом положении) высота кривой показывает число будущих солдат определенного роста. Величины роста нанесены на уровне носа. Выбран конкретный пример измерения роста 1375 ребят. Столбики – это результат измерения, а плавная линия – наиболее близкая к опыту – гауссова кривая.

Статистикам известна следующая замечательная вещь: чем больше привлеченный для построения графика материал (в данном случае чем больше ребят), тем плавнее и ближе к теории кривая, соединяющая вершины масштабных столбиков.

Самым замечательным обстоятельством является то, что кривая, получающаяся при измерении любых объектов, имеет форму той же самой кривой Гаусса, на которую, как мы видели, ложатся числа комбинаций «красного» и «черного»!

Теперь рассмотрим вид кривой нормального распределения в деталях. Нормальная кривая примерно похожа на колокол; она спадает одинаково в обе стороны сначала медленно, а потом быстро. Чтобы построить ее, математику достаточно знать три параметра: высоту ее максимума, среднее значение изучаемой величины (то есть то место на горизонтальной оси, которое соответствует среднему значению) и ширину кривой. Вершине колокола как раз и соответствует то, что мы называем средней величиной. (Как получить среднее, известно даже тем, кто враждует с арифметикой: надо сложить все измерения и разделить на число измерений.) Откуда же видно, что максимум кривой Гаусса придется на среднюю величину? Доказательство легкое: нужно проинтегрировать гауссову кривую. Но так как это занятие здесь неуместно, то просим поверить на слово, что теорема доказывается совсем просто.

Итак, остается пояснить, что такое ширина нормальной кривой. Условно меряют ширину на полувысоте колокола. Очевидно, что ширина показывает, насколько часто или редко мы встречаемся с отклонениями от среднего. Чем уже колокол, тем реже значительные отклонения от среднего.

Нормальная кривая распределения роста, которая была нарисована на предыдущей странице, описывается такими словами: «Высота кривой 200 человек», то есть двести человек имеют средний рост (первый параметр кривой).

Заметим тут же, что иметь строго средний рост невозможно, можно иметь средний рост с точностью 1, 2, 5 сантиметров и т.д. На нашем графике каждая точка представляет группу ребят, рост которых лежит в пределах 2,5 сантиметра. Средняя высота новобранцев, как мы видим по диаграмме, равна 158 сантиметрам – это второй параметр.

Третьим параметром является ширина колокола, равная в этом случае 15 сантиметрам. Знание ширины кривой позволяет сразу же оценить, с какими отклонениями от среднего мы можем встретиться.

Нормальная кривая универсальна и относится к любым событиям, поэтому, смотря все на тот же рисунок, мы можем делать общие заключения, справедливые для любых нормальных кривых. Скажем, отклонения больше трех полуширин практически не встречаются. Так обстоит дело всегда, вне зависимости от того, о чем идет речь.

Для характеристики вероятности отклонения от среднего значения в технике и статистике существуют еще среднее отклонение по абсолютной величине, среднее квадратичное отклонение, вероятное отклонение, мера точности. Все эти величины связаны между собой и с полушириной гауссовой кривой числовыми множителями, близкими к единице.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»
Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»

Работа над пьесой и спектаклем «Список благодеяний» Ю. Олеши и Вс. Мейерхольда пришлась на годы «великого перелома» (1929–1931). В книге рассказана история замысла Олеши и многочисленные цензурные приключения вещи, в результате которых смысл пьесы существенно изменился. Важнейшую часть книги составляют обнаруженные в архиве Олеши черновые варианты и ранняя редакция «Списка» (первоначально «Исповедь»), а также уникальные материалы архива Мейерхольда, дающие возможность оценить новаторство его режиссерской технологии. Публикуются также стенограммы общественных диспутов вокруг «Списка благодеяний», накал которых сравним со спорами в связи с «Днями Турбиных» М. А. Булгакова во МХАТе. Совместная работа двух замечательных художников позволяет автору коснуться ряда центральных мировоззренческих вопросов российской интеллигенции на рубеже эпох.

Виолетта Владимировна Гудкова

Драматургия / Критика / Научная литература / Стихи и поэзия / Документальное
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука