– Еще бы!.. Вот вам простая числовая иллюстрация. Имеется 10 лучших ресторанов в городе. Из них два, скажем, «Империал» и «Континенталь», разрекламированы много более других. Гурманы знают о существовании всех десяти ресторанов, которые примерно одинаково хороши. Случайные же посетители ресторанов, как правило ужинающие у себя дома, знают лишь о существовании «Империала» и «Континенталя». Положим, что тысяча человек собирается сегодня вечером поужинать вне дома. Из них 500 знатоков и 500 профанов. На первый взгляд может показаться, что менее разрекламированные рестораны не будут в проигрыше. Однако, будут – и в очень большом! 500 профанов с вероятностью 1/2 выберут один из двух наиболее известных ресторанов. Из них 250 очутится в «Империале» и 250 в «Континентале». А 500 знатоков с вероятностью 1/10 выберут один из десяти ресторанов. Таким образом, в «Империале» и «Континентале» окажется по 300 человек, а в остальных 8 ресторанах – по 50. Как видите, наименее компетентные потребители играют решающую роль.
– Да, воистину реклама – двигатель торговли!
– Бог с ней, с торговлей. Меня огорчает во всем этом деле столь легкая возможность искажения истинной цены культуры. Как несправедливо получается, что в популярности человека искусства, произведения искусства самую последнюю роль играет мнение знатоков!
– Не забывайте, что такой вывод верен только в том случае, если реклама находится в нечестных руках. Если же знатоки будут влиять на то, чтобы объем рекламы был пропорционален заслугам, то все будет на своем месте!
– Это верно, – вздохнул мой собеседник, – но как этого у нас добиться?
Случайности, складывающиеся в законы
Кривая статистического распределения, построенная на основе большого числа измерений, испытаний или опросов, передает сущность событий и является их законом.
Пожалуй, первый вопрос, который заинтересует исследователя, – это стабильность кривой распределения. Действительно, если я знаю, что явление меняется медленно, то могу использовать сегодняшнюю кривую для предсказаний завтрашних событий.
В то же время сам факт систематического смещения кривых распределения весьма многозначителен и свидетельствует о каких-то важных переменах. Допустим, смещается кривая распределения солнечных дней, построенная по данным ряда десятилетий, – значит, происходят изменения в геофизических факторах, определяющих погоду; в изменениях кривой распределения среднего возраста жизни заложена информация о борьбе с болезнями, и т.д.
Напротив, если обнаруживается исключительное постоянство кривой распределения, например рождения мальчиков и девочек, то это значит, что отношение младенцев обоего пола есть генетическое свойство, глубоко запрятанное в живой клетке и не поддающееся влиянию внешней среды.
Покажем, какие богатые выводы можно сделать из постоянства статистических данных.
Во Франции в течение долгого времени число ежегодно рождавшихся мальчиков относилось к числу девочек как 22:21. Иными словами, нормальная кривая для этого отношения, построенная по месяцам за много лет, имеет максимум при 22:21. Просматривая записи рождений мальчиков и девочек в Париже (собранные за 39 лет), Лаплас нашел, что максимум кривой лежит при отношении 26:25. (26:25 < 22:21). Используя теорию нормальной кривой, можно убедиться, что это отклонение – различие в дробях – не может быть случайным. А если так, то оно должно иметь реальное объяснение. «Когда я стал размышлять об этом, – пишет Лаплас, – то мне показалось, что замеченная разница зависит от того, что родители из деревни и провинции оставляют при себе мальчиков (мужчина в хозяйстве – более ценная рабочая сила), а в приют для подкидышей отправляют девочек». Он действительно изучил списки приютов и убедился в справедливости своего предположения.
Встречается множество случаев, когда нет преимуществ у отклонений по кривой «вправо» или «влево». А если эти отклонения являются суммарным эффектом большого числа случайностей, то распределение будет гауссовым. (Математики могут доказать справедливость этого утверждения достаточно строго.)
Если же мы ждали симметричной кривой, а получили «хвост» в одну сторону и даже в стороне от колокола наметился еще один холмик поменьше, то над этим фактом стоит задуматься: вероятно, исследованию подвергалась неоднородная группа явлений. Как это может быть? Например, речь идет об измерениях роста жителей какого-нибудь города, в котором живут представители двух рас. Пусть девяносто процентов жителей относится к высокорослой расе, а десять процентов – к низкорослой. В этом случае результаты измерений роста не создадут симметричную гауссову кривую: сбоку от среднего роста может наметиться добавочный горб кривой, во всяком случае, кривая распределения будет иметь разные хвосты влево и вправо.
Выводы статистики приобретают ценность тем большую, чем обширнее материал, на основе которого построена гауссова или иная статистическая кривая.