Читаем Невероятно - не факт полностью

Лучше совпадают с выводами теоремы Бейеса данные, полученные при наблюдении смены температуры. По данным того же города Брюсселя, вероятность того, что завтра температура будет такой же, как и вчера, равна 0,75; если 2 дня температура была неизменной, то она останется такой же и завтра с вероятностью 0,76; если 3 дня неизменна, то сохранится и завтра с вероятностью 0,78; если 5 дней, то с вероятностью 0,83, и если температура не менялась 10 дней, то с вероятностью 0,85 она останется той же и в 11-й день.

Как видите, предсказание по принципу «сегодня как вчера» имеет обоснование в теории вероятности. Большинство прогнозов погоды носит именно такой характер, а чтобы судить о научной мощи предсказаний, надо было бы скидывать со счетов все прогнозы типа «погода остается без изменений». Кажется, так метеорологи и поступают, когда испытывают новые теории и схемы предсказания погоды. Предвидение потепления или похолодания – вот в чем должно проявиться понимание законов климата.

Но вернемся к работе Бейеса. Мы проиллюстрировали примерами лишь одну из формул его теории, касающихся вероятности повторения событий. Но оправданы также попытки предсказания будущего и тогда, когда ряд событий неоднороден и состоит из чередующихся удач и неудач. В этом случае формула Бейеса меняется лишь незначительно: в ее знаменателе будет стоять полное число событий плюс 2. Например, если проведенная на курорте неделя (7 дней) порадовала нас всего лишь одним хорошим днем, то вероятность дождя на восьмой день нашего отдыха будет вычисляться так: P=(6+1)/(7+2)=7/9.

Если в баскетбол играет сильная команда «Спартак» со слабой командой, скажем текстильного института, и если, придя с опозданием к началу состязания, мы узнаем, что счет 1 : 10 в пользу института, то мы все же не поставим и гривенника против рубля за команду студентов. Для предсказания исхода состязания формула, о которой идет речь, явно без пользы. Она «работает» лишь в том случае, если нам ничего не известно о вероятностях выигрыша и проигрыша команд – участниц состязания. Вот если бы я не знал, кто играет, и не видел бы техники игры, тогда, зная счет 1 : 10, я действительно имел бы право сделать заключение: вероятность того, что следующее очко заработает ведущая команда, равна 11/13.

Интересно применение работы Бейеса в случаях, когда наши заключения об исходе события делаются на основании комбинации априорного (доопытного) знания и знания результата опыта. Из полной колоды карт потеряли одну. Какую – неизвестно. Некто просто «с потолка» высказывает гипотезу, что потеряна пика. Ясно, что при отсутствии какого-либо дополнительного знания вероятность этой гипотезы равняется 1/4. Вероятность противоположного утверждения, что потеряна не пика, равна 3/4. Поскольку автор первой гипотезы настаивает на проверке своего утверждения, то ставит опыт. Из колоды берутся две карты, которые оказываются пиками. Нетрудно видеть, что сторонники второй гипотезы после этого опыта укрепляются в своем мнении, а шансы авторов первой упали.

Формулы Бейеса позволяют произвести и количественные оценки. Можно рассчитать, насколько изменились вероятности гипотез после того, как получена дополнительная информация. Мы не будем приводить формулы и производить вычисления, а подчеркнем лишь идейную сторону дела.

Довольно редко дело обстоит так, что после проведенного единичного эксперимента ошибочные гипотезы смело могут быть отброшены, а единственно правильная поставлена на пьедестал почета. Большей частью разовый опыт лишь изменяет вероятность достоверности высказанных гипотез. Если одна из них «взяла верх» над другими не слишком значительно, то потребуется и второй эксперимент, а может быть, и третий, и сотый. По мере накопления информации вероятность правильной гипотезы будет постепенно расти. Впрочем, рост может быть и не монотонным, а на каком-то разе так называемая правильная гипотеза может здорово проиграть и даже совсем рухнуть. Так в примере урны с шарами дело может обстоять следующим образом: вытянув десять черных шаров, мы уже почти уверимся в том, что в ней нет шаров иного цвета, ан нет – одиннадцатый раз вытащили белый, и вопрос вновь остается открытым. В конце концов истина восторжествует и наступит ясность, и тогда опытное исследование может быть прекращено, и результат обнародован.

Имеется ряд проблем, в которых вероятности гипотез могут быть достаточно хорошо вычислены на каждом этапе исследования в зависимости от полученного объема информации. В подобных случаях планирование эксперимента может быть поручено ЭВМ. Машина будет оценивать вероятности всех гипотез после каждого шага и остановится тогда, когда вероятность одной из гипотез станет настолько значительной, что ее можно считать истиной.

Работы Томаса Бейеса лежат в основе современного подхода к эксперименту. Подход этот используется в генетических исследованиях, в теории военной стратегии, в исследовании движения ядерных частиц и во многих других областях деятельности людей.

Миллион цифр

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»
Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»

Работа над пьесой и спектаклем «Список благодеяний» Ю. Олеши и Вс. Мейерхольда пришлась на годы «великого перелома» (1929–1931). В книге рассказана история замысла Олеши и многочисленные цензурные приключения вещи, в результате которых смысл пьесы существенно изменился. Важнейшую часть книги составляют обнаруженные в архиве Олеши черновые варианты и ранняя редакция «Списка» (первоначально «Исповедь»), а также уникальные материалы архива Мейерхольда, дающие возможность оценить новаторство его режиссерской технологии. Публикуются также стенограммы общественных диспутов вокруг «Списка благодеяний», накал которых сравним со спорами в связи с «Днями Турбиных» М. А. Булгакова во МХАТе. Совместная работа двух замечательных художников позволяет автору коснуться ряда центральных мировоззренческих вопросов российской интеллигенции на рубеже эпох.

Виолетта Владимировна Гудкова

Драматургия / Критика / Научная литература / Стихи и поэзия / Документальное
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука