Читаем Невероятно - не факт полностью

Наложим на снимок сетку параллельных линий. Одна из линий должна проходить через начальную точку. Теперь сосчитаем число точек, попавших между нулевой и плюс первой линией (плюс – значит вправо), плюс первой и плюс второй и т.д. Такой же подсчет проведем для левой части снимка. Получили таким способом числа, пропорциональные вероятности отклонения броуновской частицы на разные расстояния вправо и влево от начальной точки.

Можно убедиться в том, что результат подсчета не зависит от того, как ориентирована сетка, наложенная на снимок, поскольку в танце броуновской частицы (так же, как в ошибках стрелка) все направления отклонения равновероятны.

Остается построить график: по горизонтальной оси отложим величины отклонения, а по вертикали – число точек.

Полученная кривая ничем не отличается от гауссовой кривой, на которую ложатся отклонения от среднего роста призывников, отклонения от средней оценки качества фильма «Великолепная семерка».

Еще раз повторим: когда речь идет о поведении случайной величины, математика не нуждается в том, чтобы мы ей сказали, чем интересуемся: физикой, биологией, эстетикой или игрой в карты.

Итак, Эйнштейн получил гауссову кривую для вероятности найти частичку на том или ином расстоянии от начального положения. Центр кривой лежит в исходной точке, то есть вероятнее всего найти частичку там, где она была. Если построить гауссовы кривые для разных промежутков времени, прошедших с начала наблюдения, то мы увидим, что с возрастанием промежутка времени между последовательными снимками положения броуновской частицы кривые будут все более расплывчатыми: через тысячу секунд частичку можно найти почти где угодно. Однако для времени порядка одной секунды кривая будет достаточно узкой.

Главным количественным результатом теории является полученная Эйнштейном формула полуширины кривой. Для данного промежутка времени она однозначно связана с температурой, коэффициентом вязкости и числом Авогадро. (Число Авогадро – это обратная величина массы атома водорода, которая равняется 1,6·10-24 грамма. Число Авогадро, равное 6·1023, имеет, очевидно, смысл числа атомов водорода в одном грамме.) Вид кривой (а значит, и ее полуширину) нам дает опыт; коэффициент вязкости всегда легко измерить; температура опыта известна. Таким образом возникает возможность определить число Авогадро. Если проделать опыты для разных жидкостей, разных температур, разных частиц и показать, что всегда получается одно и то же число, то, конечно, не останется ни одного скептика, который бы упрямо твердил: «Не верю в молекулы».

Нокаутировал скептиков Жан Перрен. Произошло это в 1909 году. Семнадцать лет спустя (большой перерыв, наверное, связан с войной) Перрен получил за эти замечательные исследования высшую награду ученого – Нобелевскую премию.

Прежде чем перейти к подробному описанию экспериментов Перрена, я хочу закончить рассказ об этом частном вопросе забавной деталью: Эйнштейн не знал о существовании броуновского движения. Обдумывая молекулярно-кинетические представления, он сообразил, что взвешенная в жидкости частичка должна быть индикатором теплового движения молекул.

Век нынешний и век минувший

Теперь мне хочется рассказать о том, как трудился Перрен. Готовясь писать эти строки, я отыскал работу Перрена, опубликованную в 1908 году во французских «Анналах физики и химии», и прочитал ее с огромным удовольствием и завистью. Хотел бы я заниматься научными исследованиями в то время или, вернее, не в то время, а в той творческой атмосфере. Очень мне нравится стиль рабочей жизни физика конца XIX и начала XX века.

Статья Перрена занимает 98 страниц. Она написана в спокойной, неторопливой манере. Попробуйте написать сейчас статью размером более 10–12 страниц, и вы увидите недоумение на лице секретаря редакции любого научного журнала. «Вы что, – вскинется он, – открыли еще одну теорию относительности?.. Все равно укладывайтесь в нормы».

Вот небольшой отрывок из статьи Перрена, характерный для научных журналов того времени:

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»
Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»

Работа над пьесой и спектаклем «Список благодеяний» Ю. Олеши и Вс. Мейерхольда пришлась на годы «великого перелома» (1929–1931). В книге рассказана история замысла Олеши и многочисленные цензурные приключения вещи, в результате которых смысл пьесы существенно изменился. Важнейшую часть книги составляют обнаруженные в архиве Олеши черновые варианты и ранняя редакция «Списка» (первоначально «Исповедь»), а также уникальные материалы архива Мейерхольда, дающие возможность оценить новаторство его режиссерской технологии. Публикуются также стенограммы общественных диспутов вокруг «Списка благодеяний», накал которых сравним со спорами в связи с «Днями Турбиных» М. А. Булгакова во МХАТе. Совместная работа двух замечательных художников позволяет автору коснуться ряда центральных мировоззренческих вопросов российской интеллигенции на рубеже эпох.

Виолетта Владимировна Гудкова

Драматургия / Критика / Научная литература / Стихи и поэзия / Документальное
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука