А что насчет Альфера и Хермана? Их раннее предсказание реликтового излучения признали не сразу, но вклад ученых должным образом осветил в своей речи Пензиас при получении Нобелевской премии в 1978 году. Что именно уловил их радиотелескоп, Пензиас и Уилсон не понимали, но упорно отказывались признавать это, за что и получили Нобелевскую премию. Сегодня может показаться немного странным, что премию не разделили, например, с Альфером и Херманом.
Открытие реликтового излучения доказывало существование Большого взрыва. Ну хорошо. А как это связано с темной материей? Вот об этом мы сейчас и поговорим.
Пензиас и Уилсон наблюдали реликтовое излучение, которое было совершенно одинаковым независимо от того, в какую сторону они направляли рупорную антенну. Но удалось бы им сделать еще более точные измерения, и они бы увидели, что излучение все равно не совсем равномерное. В каком-то направлении излучение немного теплее, в другом — чуть холоднее. И если бы они составили точную карту неба, то рассмотрели бы замысловатый узор из горячих и холодных точек. Именно эти пятна делают реликтовое излучение бесценным инструментом при изучении Вселенной.
Пятна в реликтовом излучении никто не замечал до 1992 года, пока астрофизик Джордж Смут не продемонстрировал данные, полученные со спутника СОВЕ. Смут двадцать лет искал эти пятна, поэтому неудивительно, что он позволил себе следующее высказывание: «Что ж, если вы религиозны, то это все равно что увидеть лицо Бога».
С тех пор внимание к пятнам становилось все более пристальным. А самые точные данные мы получили с европейского спутника «Планк». Взгляните на измерения «Планка» на рисунке.
Карта микроволн от Большого взрыва, наблюдаемых спутником Планк. Карта показывает излучение со всего неба. Красный цвет указывает на участки немного горячее среднего, а синим отмечены более холодные участки.
Похоже это на лицо Бога или нет, судить не берусь. Многих, возможно, возмутит, что изображение реликтового излучения выглядит так скучно, особенно если сравнивать с фантастичными фотографиями космоса. Если бы мы посмотрели на это изображение в серых тонах, то оно больше всего напоминало бы белый шум, который иногда возникает во время переключения каналов на старинном телевизоре. И ведь на самом деле: реликтовое излучение виновато примерно в одном проценте телевизионных помех.
Но картинка, которая, на первый взгляд, кажется скучными помехами, сразу же становится гораздо интересней, стоит только вспомнить, на что конкретно мы смотрим. Изображение показывает нам чрезвычайно подробную карту всей небесной сферы и представляет фотографию Вселенной, которой на тот момент, когда рассеялась первичная туманность, было лишь 380 000 лет. Это невероятно точный портрет нашей Вселенной в младенчестве.
В то время, как я уже упоминал, первые звезды и галактики еще не образовались. Вселенная состояла из газа, рассеянного практически равномерно. Но и в этом газе были отдельные области с плотностью как на десятитысячную долю выше среднего, так и ниже. Впоследствии, когда прошло достаточно времени, а Вселенная повзрослела, силы гравитации заставили плотные области сжиматься все сильнее и сильнее и поглощать все больше и больше материи из окружающих областей. Постепенно накопилось достаточно вещества для образования галактик и скоплений галактик, звезд и планет, людей и кофейных чашек. Таким образом, крошечные неоднородности реликтового излучения стали семенами, из которых впоследствии произросло все, что существует вокруг нас.
Семенами я называю области с несколько иной плотностью материи во Вселенной. На карте от «Планка» мы видим, что у излучения есть температура, которая меняется при наблюдении разных мест на небе. Почему разная температура говорит о разной плотности? Представьте себе световую волну, исходящую из места с высокой плотностью. Она стремится убежать из места с внушительными гравитационными силами. Чтобы уйти из такого места, излучение должно бороться с силой тяжести. Подобно тому, как мяч теряет скорость, когда вы подбрасываете его вверх в воздух, борясь с гравитацией Земли, световая волна так же теряет энергию, когда движется против сил гравитации. Световая волна, утратившая энергию, становится более длинной, а большие длины волн соответствуют более низкой температуре.