При расстояниях от 10-15
метров до нескольких метров: во главе угла — электромагнитное взаимодействие. Расстояния становятся слишком большими для сильного ядерного взаимодействия, а силы гравитации слишком слабы, чтобы кто- то спрашивал их мнение.При расстояниях от нескольких метров и выше: гравитационное взаимодействие становится все могущественнее. В таких масштабах большинство объектов имеет нулевой электрический заряд, и поэтому электромагнитное взаимодействие молчит в сторонке.
Слабое (ядерное) взаимодействие играет в физике ту же роль, что и саксофонное соло в песнях. Хотя оно, очевидно, не главный герой, но зато связывает все воедино и придает смысл. Без слабого взаимодействия Вселенную было бы не узнать, да и нас бы в ней не было. Кроме того, многое указывает на то, что слабое взаимодействие необходимо для понимания и открытия свойств частицы темной материи.
Слабое взаимодействие участвует в ряде процессов, происходящих в атомном ядре. Эти процессы, в частности, не дают нейтрону исчезнуть, превратившись в протон, электрон и так называемое антинейтрино. Этот процесс известен как бета-распад. Из-за возможности спонтанного бета-распада нейтроны — нестабильные частицы. Если нейтрон просто одиноко дрейфует в пространстве, то он, скорее всего, исчезнет в течение четверти часа. Следовательно, нейтроны не могут быть темной материей. Их двадцатипятиминутной жизни для этого просто недостаточно. Частицы темной материи же, в отличие от них, существовали еще до образования реликтового излучения и продолжают жить по сей день.
Что касается слабого взаимодействия, есть две частицы, так называемые W- и Z- бозоны, которые играют роль переносчиков энергии. Это взаимодействие происходит между всеми частицами, обладающими тем, что мы называем слабым изоспином, это свойство является своеобразным ответом слабого взаимодействия на электрический заряд электромагнетизма, цветовой заряд сильного взаимодействия и массу гравитационного. Все частицы вещества в Стандартной модели имеют слабый изоспин, позволяющий им влиять друг на друга посредством слабого взаимодействия.
Как мы видели, для других типов взаимодействий элементарных частиц характерны определенные масштабы, в пределах которых они действуют. А что насчет слабого взаимодействия? На какие масштабы распространяется его сила? Это взаимодействие проявляется на фантастически коротких расстояниях, примерно 10-16
м, даже меньше, чем у сильного взаимодействия. Вряд ли вас это поразит, но все же слабое взаимодействие намного слабее сильного. Дальше — меньше. Именно слабое взаимодействие главенствует на экстремально коротких расстояниях. Но все же оно играет далеко не последнюю роль, отчасти потому, что оно взаимодействует с типом частиц, которые не участвует в электромагнитных или сильных взаимодействиях, — нейтрино.Мы уже знаем, что нейтрино — это легкие невидимые частицы в Стандартной модели. Но нам нужно узнать побольше. Да простят меня фанаты бозона Хиггса, очарованного кварка и мюона, но нейтрино — крутейшие частицы в Стандартной модели. Они не просто крутые, но еще и прекрасный пример того, как чисто гипотетически может выглядеть темная материя. Ведь, как
Но они могут составлять лишь мизерную часть всей темной материи. Должно быть что-то еще, что-то хотя бы отдаленно похожее на нейтрино.
Взгляните на свою руку. За считаные секунды через нее проходят несколько тысяч миллиардов нейтрино. Значительное число. И ведь вы этого даже не замечаете. Большинство нейтрино, с которыми мы пересекаемся на Земле, образовались в ходе ядерных реакций в центре Солнца. Но также существует неисчислимое количество нейтрино, парящих в космосе еще с момента Большого взрыва. После фотонов нейтрино — самые распространенные частицы во Вселенной. У нейтрино нет ни электрического, ни цветового зарядов, и поэтому чихать они хотели на электромагнитное и сильное ядерное взаимодействия. А вот слабое взаимодействие они уважают.
Из-за небольшого радиуса влияния слабого взаимодействия нейтрино сталкиваются с обычной материей крайне редко. И раз уж нейтрино признают только слабое взаимодействие, то смогут столкнуться с атомом, лишь попав в область, составляющую менее одной миллионной части всего атома. Поэтому, когда нейтрино пролетает сквозь вашу ладонь, это похоже на бросание песчинки в сито с километровыми отверстиями. Вероятность того, что песчинка ударится об один из прутиков решетки, становится близка нулю. Вероятность столкновения зависит, помимо прочего, оттого, насколько быстро движутся нейтрино. Это немного похоже на автомобиль: чем больше скорость, тем выше вероятность столкновения. Нейтрино, образовавшиеся во время Большого взрыва и заполнившие Вселенную, в среднем без столкновений проходят сквозь брусок свинца толщиной в световой год.