Но о том, произошли позитроны от вимпов или нет, свидетельствует не только скорость. Не менее важно и то, откуда они пришли. Ведь для аннигиляции вимпам нужно сначала встретиться. Столкновение наиболее вероятно там, где скопления вимпов наиболее плотные. Темная материя распределена по всему пространству и всем галактикам. Как вы помните, считается, что Млечный Путь плавает в равномерном супе из темной материи. Тем не менее считается, что в центре Галактики этот суп плотнее всего. А поэтому наибольшее количество столкновений вимпов стоит ожидать там же. У нас также есть некоторые представления о том, как будет уменьшаться количество столкновений частиц темной материи по мере удаления от центра.
Разве магнитный альфа-спектрометр не способен просто определить, откуда приходят позитроны, и проверить, является ли это типичным местом скопления темной материи?
Боюсь, что нет. У позитронов есть электрический заряд, а частицы с электрическим зарядом испытывают отклонение, проходя через области магнитных полей. Магнитных полей в нашей Галактике полно. Так что позитрон, идущий из центра Галактики, вполне может попасть в спектрометр с совершенно другого направления.
Как тогда определить, где произошла аннигиляция вимпов? Никто не говорил, что два вимпа обязательно станут электроном и позитроном. Они могут стать и другими частицами, причем такими, которые не имеют электрического заряда, а следовательно, не слишком сильно меняют направление при пересечении магнитного поля Млечного Пути.
Хороший пример — гамма-излучение, то есть фотоны высокой энергии. Если мы сможем наблюдать гамма-излучение от двух аннигилировавших вимпов, то направление, из которого оно исходит, расскажет нам о том, где это излучение родилось.
На сегодняшний день существует два способа поиска гамма-излучения от аннигилировавших вимпов — в космосе и косвенно на поверхности Земли. Как и электроны с позитронами, гамма-излучение не в силах преодолеть атмосферу. Следовательно, для прямого наблюдения за гамма-излучением придется отправиться в космос. Телескопам на Земле недоступно изучение непосредственно гамма-излучения: они видят лишь следы, которые образуются в атмосфере от попадания гамма-лучей.
Дальше я сосредоточусь на прямых измерениях гамма-излучения в космосе. Выдающийся представитель «космических гамма-телескопов» расположен, например, на спутнике «Ферми». Спутник, являющийся совместным проектом нескольких стран, назван в честь того самого Энрико Ферми, которого я недавно цитировал. Помните, он еще не мог запомнить названия всех частиц, потому что не был ботаником. Телескоп «Ферми» предназначен специально для наблюдения за гамма-излучением, а начал свою работу он в 2008 году.
Как уже упоминалось, преимущество поиска гамма-излучения перед позитронами состоит в том, что гамма-излучение движется по прямым линиям. Соответственно, телескоп «Ферми» может обнаружить, откуда исходит гамма-излучение. Возникает очевидный вопрос: наблюдается ли особая интенсивность гамма-излучения там, где мы рассчитываем найти темную материю? И — барабанная дробь — ну… как сказать…
Да, «Ферми» обнаружил много гамма-излучения в центре Млечного Пути, а причиной этому может быть аннигиляция вимпов. Проблема лишь в том, что во Вселенной просто куча других источников этого излучения, и в центре нашей Галактики они тоже есть. Вспомним о нейтронных звездах — эти компактные хулиганы плюются не только позитронами, но и гамма-излучением.
Другая проблема заключается в том, что аннигиляция вимпов может создавать гамма-излучение самыми разными способами. Умей природа самостоятельно разоблачать вимпы темной материи, все аннигилировавшие вимпы становились бы двумя гамма-фотонами, то есть двумя вспышками электромагнитного излучения, расходящегося в разных направлениях. А количество энергии каждого фотона определялось бы формулой
Реальность же такова, что большинство гамма-лучей, исходящих от вимпов, формируется не сразу. Чаще всего ситуация выглядит так: два вимпа аннигилируют в другие частицы, например, в тау и антитау. Эти частицы нестабильны и, прожив совсем недолго, трансформируются во что-то еще. Во время этих трансформаций появляется гамма-излучение. В результате аннигилировавшие вим- пы будут испускать гамма-излучение всевозможной энергии. Но ни один из испускаемых гамма-фотонов не может иметь энергию большую, чем позволяет масса вимпа. Поэтому мы ожидаем, что у гамма-излучения от вимпов будет определенный предел, за которым оно прекратится. Это и есть те следы, которые мы ищем.
В совокупности проблемы с гамма-излучением настолько велики, что пока ни к какому выводу прийти не удалось. Ученые наблюдали излучение, причиной которого могли быть как аннигилировавшие вимпы, так и другие источники.