Читаем Невидимые лучи вокруг нас полностью

Большинство образующихся радиоактивных благородных газов (изотопы ксенона и криптона) имеют короткий период полураспада (ксенон-135 — 9,2 ч, ксенон-133 — 5,3 дня, ксенон-138 — 17 мин, криптон-88 — 2,8 ч, криптон-87 — 76 мин). Попадание этих элементов в атмосферу не представляет опасности по двум причинам: как благородные газы они не вступают в метаболизм и не накапливаются в тканях живых организмов и по мере распространения в атмосфере, быстро распадаясь, теряют свою радиоактивность. Только один изотоп — криптон-85 — принадлежит к долгоживущим радионуклидам: его период полураспада 10,7 лет. Накапливаясь в атмосфере, он повышает естественный фон облучения. Более подробно об этом будет сказано в конце главы. Здесь же отметим, что криптон-85 составляет лишь несколько процентов от общей радиоактивности газов работающего реактора.

Образование газов с наведенной радиоактивностью происходит различно в реакторах с разными системами охлаждения. Так, например, в реакторах с газовым охлаждением при использовании СО2 идет ядерная реакция внетопливных элементов О16  np → N16 с образованием короткоживущего радиоактивного азота (период полураспада 7,3 с) с жестким γ-излучением. Оно вносит значительный вклад в γ-поле работающих турбин реактора, снижаемое соответствующей физической защитой.

Из образующихся во время работы реактора газообразных нуклидов наибольшее внимание привлекает радиоактивный изотоп водорода — тритий Н3. Некоторое его количество образуется в процессе деления урана, а также благодаря воздействию нейтронов на изотопы лития, бора и тяжелый изотоп водорода дейтерий. Особенно много его образуется в реакторах, работающих на тяжелой (дейтериевой) воде. Графит, используемый в качестве регулятора во многих системах реакторов, содержит примеси лития, который тоже служит источником трития… Из-за трудностей в фиксации и относительно большого периода его полураспада (12,4 лет) тритий попадает в окружающую реактор среду и распространяется в атмосфере, водах морей и океанов, правда, в очень небольших количествах.

При делении урана и при радиоактивном распаде продуктов деления в работающем реакторе атомных электростанций постоянно образуется ряд легколетучих радиоактивных изотопов иода: J131 (п. п. 8 дней), J132 (2,3 ч), J134 (53 мин), J135 (6,7 ч) и J129 (1,6 107 года). Из этих изотопов долгоживущий J129 образуется в столь малом количестве, что не обнаруживается во внешней среде. Не представляют опасности и остальные изотопы благодаря ничтожно малому времени их существования. Исключение составляет лишь J131, имеющий период полураспада 8 дней. Попадая в газообразные отходы, он быстро распространяется на местности вблизи реактора и благодаря химической активности быстро включается в пищевые цепи — через молоко попадает в организм человека. Фильтры, устанавливаемые на пути газообразных отходов, захватывают основную часть образующегося иода, резко снижая его поступление в окружающую реактор среду.

Таким образом, благодаря замкнутому циклу работающих атомных электростанций, системе фильтров для газообразных и летучих продуктов в окружающую среду поступает лишь незначительное количество криптона-85, трития и иода-131: намного меньше, чем при переработке отслуживших урановых стержней (твэлов), — следующего этапа производства атомной энергии.

Работа заводов

по регенерации ядерного топлива

Во время работы атомной электростанции, получающей энергию за счет деления атомов урана, среди продуктов деления и ядерных реакций в стержнях накапливается плутоний-239 (Pu239) — чрезвычайно ценное ядерное горючее — путем следующих превращений урана:



Поэтому отработанные стержни поступают на специализированные заводы для извлечения и очистки плутония-239 и превращения его в новое ядерное горючее для реакторов.

На регенерационных заводах твэлы выдерживаются некоторое время в водных бассейнах для охлаждения и распада многих короткоживущих радионуклидов. Затем их содержимое извлекается, обрабатывается азотной кислотой, органическими комплексообразующими растворителями. В результате уран и плутоний, отделяются от радиоактивных отходов, превращаются в окислы, удобные для приготовления ядерного горючего.

При этих процедурах такие летучие и газообразные нуклиды, как йод, тритий, криптон, ксенон и другие, выделяются в окружающее пространство и, пройдя ряд поглотителей и фильтров, все же в некотором количестве поступают через заводские трубы в атмосферу. Долгоживущий криптон-85 — основной компонент в радиоактивном загрязнении внешней среды. Тритий в значительной мере растворяется в так называемых жидких отходах, содержащих основную массу радиоактивных отбросов, и только около 7 % попадает непосредственно в атмосферу. Однако при сгущении жидких отходов происходит дополнительное поступление трития в окружающую среду.

Перейти на страницу:

Похожие книги

Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
История биологии с начала XX века до наших дней
История биологии с начала XX века до наших дней

Книга является продолжением одноименного издания, вышедшего в 1972 г., в котором изложение доведено до начала XX в. В настоящей книге показано развитие основных биологических дисциплин в XX в., охарактеризованы их современный уровень и стоящие перед ними проблемы. Большое внимание уделено формированию молекулярных отраслей биологии и их роли в преобразовании всего комплекса биологических наук. Подобная книга на русском языке издается впервые.Предназначается для широкого круга научных работников, преподавателей, аспирантов и студентов биологических факультетов.Табл. 1. Илл. 107. Библ. 31 стр.Книга подготовлена авторским коллективом в составе:Е.Б. Бабский, М.Б. Беркинблит, Л.Я. Бляхер, Б.Е. Быховский, Б.Ф. Ванюшин, Г.Г. Винберг, А.Г. Воронов, М.Г. Гаазе-Рапопорт, О.Г. Газенко, П.А. Генкель, М.И. Гольдин, Н.А. Григорян, В.Н. Гутина, Г.А. Деборин, К.М. Завадский, С.Я. Залкинд, А.Н. Иванов, М.М. Камшилов, С.С. Кривобокова, Л.В. Крушинский, В.Б. Малкин, Э.Н. Мирзоян, В.И. Назаров, А.А. Нейфах, Г.А. Новиков, Я.А. Парнес, Э.Р. Пилле, В.А. Поддубная-Арнольди, Е.М. Сенченкова, В.В. Скрипчинский, В.П. Скулачев, В.Н. Сойфер, Б.А. Старостин, Б.Н. Тарусов, А.Н. Шамин.Редакционная коллегия:И.Е. Амлинский, Л.Я. Бляхер, Б.Е. Быховский, В.Н. Гутина, С.Р. Микулинский, В.И. Назаров (отв. секретарь).Под редакцией Л.Я. Бляхера.

Коллектив авторов

Биология, биофизика, биохимия