Читаем Невидимые лучи вокруг нас полностью

Наблюдение в течение 25 лет за частотой возникновения лейкемии у жителей Хиросимы и Нагасаки, перенесших атомную бомбардировку в 1945 г., позволило установить количественную зависимость возникновения лейкемии от дозы острого облучения. На рис. 8 представлена зависимость возникновения лейкемии от дозы облучения по данным Научного комитета по действию атомной радиации, опубликованным в 1972 г. Из этих данных видно, что в Нагасаки у населения, получившего γ-облучение менее 100 рад, не обнаружено повышения заболеваемости лейкемией. В Хиросиме, где поток радиации содержал значительное количество нейтронов, порог действия снизился до 10 рад.



Рис. 8. Возникновение лейкемии у жителей Хиросимы (1) и Нагасаки (2), переживших атомный взрыв


При экспериментальном взрыве атомно-водородной бомбы, осуществленном США в 1954 г. на уединенном коралловом рифе в Тихом океане, 17 тыс. жителей Маршалловых островов (удаленных более чем на 300 км от места взрыва) подверглись γ-облучению от радиоактивных осадков в дозе около 175 рад. Однако среди них в течение 15 последующих лет не было обнаружено ни одного случая заболевания лейкемией.

Для лечения заболеваний щитовидной железы широко применяется раствор солей радиоактивного иода. При приеме внутрь радиоактивный иод почти полностью поглощается щитовидной железой, оказывая лечебное действие. Однако некоторое небольшое его количество, циркулируя в крови, осуществляет общее облучение организма. В течение курса лечения организм оказывается облученным в дозе 15–20 рад. Обследование десятков тысяч таких больных отчетливо показало, что при этих дозах облучения не происходит заболевания лейкемией.

Из имеющегося фактического материала можно сделать вывод, что при остром облучении в малых дозах (10 рад и ниже) и тем более при хроническом облучении в течение длительного времени нельзя говорить о риске возникновения лейкемии с большей вероятностью, чем она наблюдается в нормальных условиях в современной жизни человека. В еще большей степени это справедливо для других форм рака, имеющих более высокий порог действия радиации.

Интересны с точки зрения проблемы малых доз результаты обследования рабочих урановых, радиевых и других шахт (в Чехословакии, Канаде, Великобритании, США, Швеции), где систематическое вдыхание радона приводит к α-облучению эпителия бронхов с большой плотностью ионизации. При обследованиях за единицу была принята доза, получаемая на рабочем уровне за месяц (РУМ), соответствующая дозе α-облучения бронхиального эпителия 1–2 рад. У рабочих, получивших менее 120 РУМ (т. е. менее 120–240 рад), не выявлено увеличения количества заболеваний раком легких по сравнению с окружающим населением. Большая смертность от рака легких наблюдалась лишь у рабочих, получивших 360 и более РУМ.

Из всего сказанного видно, что при малых дозах облучения (25 рад и ниже) нет никаких оснований утверждать, что они повышают количество раковых заболеваний по сравнению с нормой.

Снижение иммунитета животных и человека под влиянием больших, сублетальных и летальных доз ионизирующего излучения в настоящее время твердо установлено. Опасность снижения сопротивляемости человеческого организма различным вирусным, бактериальным и другим инфекциям, падение способности к выработке защитных антител в результате облучения побудили провести специальные исследования его систем в зависимости от дозы облучения.

Сопоставление всех имеющихся данных о влиянии ионизирующего излучения на иммунный ответ человеческого организма позволило Научному комитету по действию атомной радиации при ООН сделать вывод, что только дозы порядка 100 рад приводят к повышению чувствительности организма к инфекциям. Из этого заключения следует, что облучение в малых дозах (50 рад и ниже) нельзя рассматривать как вредное для иммунитета человека.

Наиболее сложен вопрос об определении опасности облучения для потомства, т. е. определении так называемых генетических последствий облучения.

При облучении гонад в воспроизводящих клетках (сперматозоидах, яйцеклетке) возможно повреждение ДНК, в структуре которой, как известно, в виде генетического кода хранится вся информация, необходимая для нормального развития плода. Радиационное нарушение генетического кода(мутация), в зависимости от его характера и локализации нарушения, может привести к тем или иным дефектам развития, ведущим к рождению потомства, отягощенного наследственными заболеваниями.

За последние годы накоплен значительный материал по радиационному поражению генома мышей. Повышение генетических повреждений в потомстве при облучении ниже 25 рад не удалось обнаружить. Экстраполировать эти данные на человека очень трудно. Имеется большое различие в размерах генома мыши и человека, различно время созревания половых клеток, период репродуктивной жизни, количество потомства.

Перейти на страницу:

Похожие книги

Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
История биологии с начала XX века до наших дней
История биологии с начала XX века до наших дней

Книга является продолжением одноименного издания, вышедшего в 1972 г., в котором изложение доведено до начала XX в. В настоящей книге показано развитие основных биологических дисциплин в XX в., охарактеризованы их современный уровень и стоящие перед ними проблемы. Большое внимание уделено формированию молекулярных отраслей биологии и их роли в преобразовании всего комплекса биологических наук. Подобная книга на русском языке издается впервые.Предназначается для широкого круга научных работников, преподавателей, аспирантов и студентов биологических факультетов.Табл. 1. Илл. 107. Библ. 31 стр.Книга подготовлена авторским коллективом в составе:Е.Б. Бабский, М.Б. Беркинблит, Л.Я. Бляхер, Б.Е. Быховский, Б.Ф. Ванюшин, Г.Г. Винберг, А.Г. Воронов, М.Г. Гаазе-Рапопорт, О.Г. Газенко, П.А. Генкель, М.И. Гольдин, Н.А. Григорян, В.Н. Гутина, Г.А. Деборин, К.М. Завадский, С.Я. Залкинд, А.Н. Иванов, М.М. Камшилов, С.С. Кривобокова, Л.В. Крушинский, В.Б. Малкин, Э.Н. Мирзоян, В.И. Назаров, А.А. Нейфах, Г.А. Новиков, Я.А. Парнес, Э.Р. Пилле, В.А. Поддубная-Арнольди, Е.М. Сенченкова, В.В. Скрипчинский, В.П. Скулачев, В.Н. Сойфер, Б.А. Старостин, Б.Н. Тарусов, А.Н. Шамин.Редакционная коллегия:И.Е. Амлинский, Л.Я. Бляхер, Б.Е. Быховский, В.Н. Гутина, С.Р. Микулинский, В.И. Назаров (отв. секретарь).Под редакцией Л.Я. Бляхера.

Коллектив авторов

Биология, биофизика, биохимия