Читаем Невидимый конфликт полностью

Принципиальный ответ на этот вопрос дать нетрудно. Надо проанализировать многолетние метеорологические наблюдения в данном районе и выбрать наиболее сильный ветер. Но какой выбрать — тот, что, по статистике, наблюдается раз в пять лет? Или раз в пятьдесят лет? Или, может быть, тот, что теоретически возникает раз в столетие? Здесь вопрос далеко не только инженерный; в нем просматриваются моральные и социальные мотивы, примешиваются экономические соображения, а его решение, коль скоро оно дискуссионно, нуждается в юридическом «облачении». Подобная дилемма возникает и при строительстве в сейсмических условиях: полное исключение фактора риска, конечно, вещь прекрасная, но связанная с неимоверным удорожанием строительства. В настоящее время оно является массовым, а в мире нет столь богатой державы, которая могла бы позволить себе строить без риска, хотя бы теоретически.

Среди специалистов весьма популярная формула, представленная на рис. 3. С ее помощью скорость ветра трансформируется в лобовое давление (напор), которое струи воздуха оказывают на плоскость, поставленную перпендикулярно направлению их движения. Скорость выражается в метрах в секунду, а давление — в килограммах на квадратный метр. Наибольшая скорость ветра была зарегистрирована 12 апреля 1934 г. в Нью-Гемпшире (США). Она составляла 416 км/ч, что соответствует давлению 722 кг/м2 Столько весит железобетонная плита толщиной 30 см. Так как поверхность человеческого тела, противостоящая такому стремительному ветру, приблизительно равна 0,5 м2, человек не устоит и секунды — он будет мгновенно повален горизонтальной силой в 360 кг. Для сравнения заметим, что даже самый страшный удар лучшего боксера в десятки раз слабее этого природного «нокаута».

Все сказанное выше справедливо, но … при идеальных условиях. Практически же здания и сооружения, которые часто представляют собой тела сложной формы, нарушают нормальное течение воздушных масс и вызывают ряд аэродинамических эффектов, от которых сами и страдают. Возьмем наиболее простой случай — прямоугольное в плане здание с плоской кровлей. Этот элементарный параллелепипед деформирует силовые линии воздушного потока, который обтекает его с пяти сторон. Получающуюся при этом сложную картину лучше всего можно наблюдать в аэродинамическом туннеле. Около 80% напора ветра приходится на лобовую, наветренную стену, однако примерно 60% той же нагрузки испытывает противоположная, подветренная сторона в виде так называемого отсоса. Две другие, параллельные направлению ветра стены, затягиваются воздушным потоком, а на плоскую кровлю оказывается определенное давление.

При двускатной кровле картина усложняется. В зависимости от угла наклона наветренный скат испытывает значительный напор ветра, а подветренный — отсос, возникающий в силу разрежения; поэтому подветренный скат кровли как бы стремится взлететь. При более сложной форме кровли воздействие ветра распределяется иначе, но все же становится более или менее ясно, почему в сообщениях о бурях и ураганах говорится о снесенных крышах. В случае легких конструкций и кровель крыша может оказаться в положении самолетного крыла — благодаря ее форме возникает подъемная сила, превышающая ее собственный вес и прочность ее закрепления на конструкции.

Известные приближения и упрощения в сложной аэродинамической картине вполне допустимы, особенно если они обеспечивают большую надежность здания. Наиболее существенным упрощением можно считать рассмотрение напора ветра как статической нагрузки. Если здание достаточно массивно, пульсации ветра обычно не могут возбудить в нем динамических (инерционных) сил.

Однако при создании очень высоких и гибких сооружений такой подход недопустим. Многолетний негативный опыт заставил специалистов окончательно убедиться в этом. Среди наиболее трагичных историй такого рода первое место, несомненно, занимает катастрофа с висячим мостом у города Такома (США), произошедшая в 1940 г. Но об этом мы расскажем несколько позже.

В Болгарии, как и в большинстве развитых стран, «ветровые вопросы» регламентируются нормативными документами, имеющими силу закона. Страна разделена на три зоны в зависимости от преобладающих ветров. Нормативный напор ветра для этих зон — 35, 45 и 55 кг/м2, что соответствует скорости ветра 85, 97 и 107 км/ч. Для большинства горных районов напор ветра определяется индивидуально в зависимости от непосредственно измеренной скорости. Чаще всего нормативной здесь считается скорость ветра, которая превышает статистически встречающуюся раз в пять лет.

<p>В ОПРЕДЕЛЕННОЕ ВРЕМЯ, ПРИ ОПРЕДЕЛЕННЫХ ОБСТОЯТЕЛЬСТВАХ…</p>

Может показаться странным, но изменение температуры окружающей среды является нагрузкой — и часто весьма значительной — на строительные конструкции.

Перейти на страницу:

Похожие книги