Читаем Nexus полностью

Это означает, что ИИ начинает свою жизнь как "детский алгоритм", который обладает большим потенциалом и вычислительной мощностью, но на самом деле мало что знает. Человеческие родители ИИ дают ему только способность к обучению и доступ к миру данных. Затем они позволяют детскому алгоритму исследовать мир. Как и органические новорожденные, детские алгоритмы учатся, замечая закономерности в данных, к которым они имеют доступ. Если я прикоснусь к огню, мне будет больно. Если я заплачу, придет мама. Если я пожертвую ферзем ради пешки, то, скорее всего, проиграю партию. Находя закономерности в данных, детский алгоритм узнает больше, в том числе многое из того, чего не знают его родители-люди.

Однако базы данных не лишены погрешностей. Алгоритмы классификации лиц, изученные Джой Буоламвини, были обучены на наборах данных, состоящих из помеченных онлайн-фотографий, таких как база данных Labeled Faces in the Wild. Фотографии в этой базе данных были взяты в основном из новостных статей в Интернете. Поскольку в новостях преобладают белые мужчины, 78 % фотографий в базе данных были мужскими, а 84 % - белыми. Джордж Буш-младший фигурировал 530 раз - более чем в два раза чаще, чем все чернокожие женщины вместе взятые. Другая база данных, подготовленная правительственным агентством США, более чем на 75 % состояла из мужчин, почти на 80 % из светлокожих и всего на 4,4 % из темнокожих женщин. Неудивительно, что алгоритмы, обученные на таких наборах данных, отлично идентифицировали белых мужчин, но плохо идентифицировали чернокожих женщин. Нечто подобное произошло и с чатботом Tay. Инженеры Microsoft не закладывали в него никаких предрассудков. Но несколько часов воздействия токсичной информации, циркулирующей в Twitter, превратили ИИ в ярого расиста63.

Дальше - хуже. Для того чтобы обучаться, детским алгоритмам, помимо доступа к данным, нужна еще одна вещь. Им также нужна цель. Человеческий ребенок учится ходить, потому что хочет куда-то попасть. Львенок учится охотиться, потому что хочет есть. Алгоритмы тоже должны иметь цель, чтобы учиться. В шахматах легко определить цель: взять короля противника. ИИ узнает, что жертвовать ферзем ради пешки - это "ошибка", потому что она обычно мешает алгоритму достичь цели. При распознавании лиц цель также проста: определить пол, возраст и имя человека, указанные в исходной базе данных. Если алгоритм догадался, что Джордж Буш-старший - женщина, а в базе данных указано, что мужчина, цель не достигнута, и алгоритм учится на своей ошибке.

Но если вы хотите обучить, например, алгоритм найма персонала, как вы определите цель? Как алгоритм узнает, что он совершил ошибку и нанял "не того" человека? Мы можем сказать алгоритму, что его цель - нанимать людей, которые остаются в компании не менее года. Работодатели, очевидно, не хотят тратить много времени и денег на обучение работника, который через несколько месяцев увольняется или уходит. Определив таким образом цель, пора обратиться к данным. В шахматах алгоритм может получить любое количество новых данных, просто играя против самого себя. Но на рынке труда это невозможно. Никто не может создать целый воображаемый мир, в котором детский алгоритм может нанимать и увольнять воображаемых людей и учиться на этом опыте. Детский алгоритм может обучаться только на существующей базе данных о реальных людях. Как львята узнают, что такое зебра, наблюдая за узорами в реальной саванне, так и детские алгоритмы узнают, что такое хороший сотрудник, наблюдая за узорами в реальных компаниях.

К сожалению, если реальные компании уже страдают от каких-то укоренившихся предрассудков, детский алгоритм, скорее всего, усвоит эти предрассудки и даже усилит их. Например, алгоритм, ищущий в реальных данных паттерны "хороших сотрудников", может прийти к выводу, что нанимать племянников босса - всегда хорошая идея, независимо от того, какой еще квалификацией они обладают. Ведь данные явно указывают на то, что "племянников босса" обычно берут на работу, когда они претендуют на нее, и редко увольняют. Детский алгоритм заметит эту закономерность и станет кумовьями. Если его поставить во главе отдела кадров, он начнет отдавать предпочтение племянникам босса.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука