Читаем Незримые пути полностью

Радиолокатор покажет и железный мост через эту реку, но опять-таки потому, что от металла волны отражаются лучше, чем от воды.

Вот почему радиолокатор не увидит опознавательного знака на самолете. Ведь самолет металлический, лучи отражаются от его поверхности одинаково, вне зависимости от того, какой краской он выкрашен или что на нем нарисовано.

Предположим, что мы с тобой построили крохотный передатчик дециметровых волн и такой же приемник. В этих аппаратах можно применить обычные лампы, например те же пальчиковые.

Ты уже знаешь, что радиолокацией можно определить расстояние не только до неподвижного объекта, например до какого-нибудь дома, но и до летящего самолета; причем, как известно, радиолокатор сразу показывает и скорость его и направление полета.

Попробуем решить очень простую задачу — с помощью радиолокатора определим расстояние до дома.

У приемника и передатчика — направленные антенны. Для этих волн они могут быть сделаны с небольшими рефлекторами.

Поставим наши аппараты в поле на некотором расстоянии друг от друга.

Впереди виднеется дом с железной крышей.

Направим рефлектор передатчика точно на крышу дома. Включим приемник и его антенну тоже нацелим на этот дом.

Рассуждаем так: если мы на мгновение включим передатчик (причем в этот же момент заметим время на секундомере), луч добежит до крыши, отразится от нее, помчится обратно, и мы его тут же поймаем рефлектором приемника. Несомненно, что в телефоне мы услышим звук работающего передатчика. Надо только успеть нажать кнопку секундомера, чтобы определить, сколько времени волна бежала до дома и обратно.

Дальше все получается очень просто — обыкновенная арифметика. Надо разделить полученное время на два, чтобы узнать путь волны только до дома, не считая времени обратного пробега.

Затем, зная скорость распространения волн, а именно — триста тысяч километров в секунду, мы можем легко высчитать расстояние до дома.

Принцип, конечно, правильный. Именно на нем и основано применение радиолокации для измерения расстояний.

Ведь это то же самое, что и обыкновенное эхо. В данном случае без всяких приборов, только по секундомеру, можно определить расстояние до ближайшего леса или горы. Надо громко крикнуть и, смотря на бегущую стрелку, ждать, пока эхо долетит до тебя.

Сейчас мы посылаем не звук, а радиоволну.

Приготовим секундомер. Одновременно с его кнопкой нажали ключ передатчика — и в телефоне приемника сразу же услышали сигнал.

Ясно, что принят не отраженный луч, а тот, который непосредственно прибежал от передатчика. Ведь передатчик стоит совсем рядом и, несмотря на направленные антенны, все же будет мешать слушать радиоэхо.

Вот если бы успеть мгновенно выключить передатчик, чтобы принять отраженный луч!

Ничего не получится.

Человек не может манипулировать с такой скоростью ни ключом, ни кнопкой секундомера. Кроме того, ухо тоже не может различить звуковые сигналы, которые приняты друг за другом с ничтожным промежутком времени- в миллионные доли секунды. Ведь если до дома, куда мы посылали радиолуч, расстояние будет триста метров, то луч пройдет эти метры всего за одну миллионную долю секунды.

Никакие секундомеры не смогут определить эту скорость.

Не удался наш опыт.

Видишь, с какими трудностями встретились инженеры при разработке радиолокатора.

Для того чтобы понять его сущность, поставь себя в их положение, когда они пытались практически применить открытие А. С. Попова.

Ну что бы ты стал делать для решения задачи, если требуется определить время пробега радиоволны до цели?

Как измерить миллионные или пусть даже тысячные доли секунды?

Может быть, для этого использовать какую-нибудь автоматику? Например, подключить к приемнику реле или самопишущее перо, которое будет отмечать на вращающемся барабане и время посылки сигнала и время приема его отражения, то есть радиоэхо?

Мысль правильная, но очень далекая от реальных возможностей. Ее просто нельзя осуществить.

Никакие реле, никакие движущиеся механизмы непригодны, если от них требуется, как говорят, "срабатывание" в миллионные доли секунды. С такой скоростью невозможно провести черточку на барабане, чтобы отметить время посылки сигнала.

Значит, нужно искать другие пути.

Нельзя ли здесь использовать принципы телевидения?

В те годы, когда инженеры бились над радиолокацией, не существовало телевидения в том виде, как сейчас, но основа всего телевидения, то есть электроннолучевая трубка, уже имелась, и применение ее для этих целей было разработано в России.

<p>Как увидеть невидимое</p>

Представь себе колбу с почти плоским дном.

Дно это служит экраном и покрыто изнутри специальным составом, который светится под действием потока электронов.

Источник электронов находится в узкой части колбы; это катод — фарфоровая трубочка с нанесенным на нее слоем окиси редких металлов.

Внутри трубочки накаливается нить. С катода свободно летят электроны.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей