Третий парадокс состоит в том, что скорость кровообращения в разных областях мозга постоянно изменяется. Это означает, что, занимаясь физическими упражнениями, человек стимулирует кровоток в моторных и сенсомоторных областях, а не во всём мозге сразу, как предполагалось ранее. Кровеносная система обеспечивает адаптивное динамическое кровоснабжение головного мозга. При повышении нагрузки на мозг скорость и объём движущейся крови в одних областях увеличиваются, а в других — уменьшаются. В тех областях мозга, которые испытывают максимальную функциональную нагрузку, усиливается кровоток, а не задействованные в данный момент области сохраняют исходное кровообращение. По этой причине добиться системного увеличения кровотока во всём мозге при помощи физической нагрузки скелетной мускулатуры крайне затруднительно. В такой ситуации высокий метаболизм будет поддерживаться только в сенсомоторных областях. В остальной части мозга кровоток будет сохраняться на относительно низком уровне.
На этом принципе построены попытки исследовать мозг живого человека при помощи функциональной магнитно-резонансной (functional magnetic resonance imaging, фМРТ) и позитронно-эмиссионной томографии (positron emission tomography, ПЭТ) мозга с применением радионуклидных технологий. При всей технической сложности суть этих методов функциональной томографии довольно проста. фМРТ базируется на уникальной связи между течением крови и присутствием кислорода в одних и тех же отделах головного
мозга при активизации нейронов. Например, если человек начинает всматриваться в некий объект, то активизируются зрительные поля коры, расположенные в затылочной доле. Это выражается в том, что в зрительных полях увеличивается кровоток и возрастает количество кислорода (Cooper et al., 1975).
Отличия ПЭТ состоят в том, что при помощи похожих методов происходит сканирование мозга, предварительно насыщенного соединениями, содержащими короткоживущие радионуклиды кислорода (150), углерода (150), углерода (11С), фтора (18F) и азота (13N). Они имеют очень короткий период полураспада, но позволяют проанализировать места связывания соединений (содержащих эти радионуклиды) в функционально нагруженных областях мозга. Поскольку основным метаболитом нейронов являются сахара, в экспериментах чаще всего используют меченную радионуклидами глюкозу (18F-2-fluoro-2-deoxy-D-glucose, FDG) или Н2150.
Применение обоих методов для анализа функциональных областей мозга весьма сходно. Обычно участнику эксперимента предлагают думать на определённую тему, производить математические операции, слушать звуки или слова, читать текст, испытывать обонятельные или вкусовые ощущения. В это время производится фМРТ- или ПЭТ - сканирование, которое позволяет установить наиболее возбуждаемые области головного мозга. Самые активные зоны мозга связывают радиоизотопы или меняют скорость кровотока, что рассматривается как признак локализации функций. Понятно, что активизируются и первичные, и вторичные центры мозга. Особенно расплывчаты границы функциональных полей при решении ассоциативных задач. К ним относятся вычисления, понимание слов и текста, абстрактных изображений и восприятие звуков. Тем не менее даже такие задачи начинают ставиться в наблюдениях на добровольцах или пациентах с заболеваниями нервной системы.
Сомнения в результатах этих исследований вызваны тем, что не решены базовые задачи, подтверждающие достоверность обоих методов. С одной стороны,
при использовании фМРТ и ПЭТ не учитывается индивидуальная изменчивость сосудистой сети и скорости кровотока конкретных людей. По этой причине наблюдаемое в эксперименте локальное изменение метаболизма может быть вызвано как активностью самих нейронов, так и индивидуальными особенностями кровотока в этой области мозга. С другой стороны, пока не проведено корректное сопоставление прижизненной локализации областей мозга, выделенных на фМРТ и ПЭТ, с аутопсийными цитоархитектоническими исследованиями этих же центров. Подобную работу необходимо выполнить на одних и тех же людях, используя центры мозга с заведомо однозначными функциями. Поскольку такие исследования пока не проведены, результаты фМРТ и ПЭТ имеют ту же научную ценность, что и индекс интеллекта.
Следует отметить, что систематическая многолетняя нагрузка одних и тех же областей мозга приводит к дифференциальному развитию склеротических изменений. Возрастные патологические процессы в мозге топографически повторяют поведенческие приоритеты. Если в поведении превалировала двигательно-моторная активность, то в первую очередь патогенетические процессы затронут ассоциативные центры, и наоборот.