Тот, кто сегодня начнет читать «Математические начала натуральной философии», удивится, не найдя в них и следа анализа бесконечно малых – великого математического изобретения Ньютона, которому посвящена значительная часть следующей главы. Для описания математических размышлений в своем труде ученый предпочел язык синтетической геометрии. Английский гений часто говорил, что использовал вычисления для большей части данных, приведенных в «Математических началах натуральной философии», хотя и представлял их затем на гораздо более строгом языке геометрии. Возможно, Ньютон и утверждал подобное, но документальных доказательств этому нет.
«Математические начала натуральной философии» появились после того, как Ньютон отверг новую аналитическую геометрию и обратился к идеям греков в области синтетической геометрии. Это превращение не может не удивлять, если знать, что вначале Ньютон изучал Декарта, а не Евклида, и с помощью декартовой геометрии обосновал свои расчеты со всей алгоритмической мощью. Между тем так все и было. Начиная с 1680 года Ньютон начал серию работ о синтетической геометрии, которую завершил к 1693 году попытками реставрировать греческие геометрические методы. Эти работы так и остались неопубликованными. Другая возможная причина отсутствия алгебраических расчетов состоит в том, что ученый, приступая к написанию «Математических начал натуральной философии», подумал: если он представит свои мысли на этом новом и недостаточно распространенном языке, понять написанное смогут немногие.
Чтобы принять всерьез научную теорию, необходимо, чтобы она была согласована с наблюдениями, доступными в момент ее разработки, и объясняла самые важные явления. Так как три закона Кеплера выводились из теории гравитации и согласовывались с результатами наблюдений за небесными телами, теория Ньютона, описанная в «Математических началах натуральной философии», переступила через незыблемое научное правило: соответствовать имеющимся данным.
Однако успех физической теории определяется точностью прогнозов, которые она позволяет сделать. Математическая формула всемирного тяготения в виде уравнений позволила делать прогнозы, и экспериментальное подтверждение подняло ее научную состоятельность. Теория гравитации была подтверждена в течение следующих двух веков, и некоторые сюжеты этого триумфа были весьма впечатляющими.
Два таких момента произошли почти одновременно в середине XVIII века. С одной стороны, крупные французские экспедиции в Лапландию и Перу подтвердили предсказание Ньютона о том, что Земля сплюснута у полюсов. С другой стороны, появились лунные таблицы, разработанные немецким астрономом Тобиасом Майером на основании теории тяготения Ньютона и расчетов швейцарского математика Леонарда Эйлера (1753). Английское адмиралтейство было готово заплатить немалую сумму, чтобы помочь своим кораблям определять положение в море.