Второе следствие из приведенного выражения — это изменение спектрального состава света в процессе рассеяния. Действительно, зависимость от длины волны в данном случае довольно сильная — λ-4
. Легко убедиться, что рассеяние света с длиной волны λ=0,45 мкм (синяя область спектра) происходит примерно в 4,5 раза более интенсивно, чем в красной области с λ=0,65 мкм. Заметим, что такую же зависимость от длины волны имеет интенсивность света, рассеянного на флуктуациях плотности газа. Поскольку свечение дневного неба практически полностью определяется рассеянием солнечного света в атмосфере, то синий цвет ясного неба является прямым следствием этого эффекта. В других приближениях для частиц с большими размерами эта зависимость становится более слабой.Третье обстоятельство, на которое полезно обратить внимание, это то, что при прочих равных условиях интенсивность рассеянного света пропорциональна количеству рассеивающего вещества. Например, в атмосфере самыми яркими являются нижние, наиболее плотные слои воздуха. Очевидно, что по мере подъема на достаточно большие высоты яркость неба должна уменьшаться из-за «угасаний» нижних слоев. Аналогичная картина имеет место при заходе Солнца за горизонт — по мере подъема границы земной тени самые плотные слои атмосферы экранируются от солнечного излучения и последовательно угасают.
Наконец, можно сделать еще одно любопытное замечание. Как следует из приведенной формулы, при увеличении объема частиц, конечно в пределах применимости данного приближения, интенсивность рассеянного света возрастает пропорционально квадрату объема или шестой степени их характерного размера, а от общего количества рассеивающих центров зависит только линейно. Поэтому некоторое определенное количество вещества в зависимости от степени раздробленности будет рассеивать свет неодинаковым образом. Для простых оценок положим, что все частицы, число которых
Легко видеть, что чем крупнее «помол» вещества, тем больше интенсивность рассеиваемого им света.
Сделанные оценки имеют качественный характер в силу грубости сделанных предположений, однако правильно описывают общую картину процесса рассеяния. Эффект укрупнения частиц, например, легко наблюдать в процессе образования облаков, когда невидимый водяной
Выше мы совершенно не останавливались на процессах поглощения света при его распространении в атмосфере, чтобы не усложнять схематическую картину рассеяния, как основы оптических явлений в атмосфере. Однако если это более или менее оправдано при описании явлений, наблюдающихся на достаточно больших угловых высотах над горизонтом из-за относительно небольшой оптической толщи воздуха вдоль луча зрения, то для явлений, наблюдающихся вблизи горизонта, такое пренебрежение поглощением может оказаться неприемлемым. Например, оптическая толща атмосферы для луча зрения, проходящего на высоте 2° над горизонтом, для зеленой области спектра примерно 4, а для синей 6, т. е. в этих спектральных диапазонах свет ослабляется соответственно в е4
≈50 и e8≈ 400 раз! Для красного света такое ослабление составляет всего приблизительно 12 раз. Из этих оценок легко понять, почему на диск заходящего Солнца можно безболезненно смотреть без всяких защитных фильтров, а его цвет имеет насыщенную оранжевую окраску. Понятно также, что звезды и даже яркие планеты и Луна в непосредственной близости от горизонта не могут наблюдаться.