Читаем Ноктюрн Пифагора полностью

— А при том, что он первый вычислил, на какие части надо делить струну, чтобы получать звуки разной высоты. И помогли ему арифметика и геометрия.

Тут капитан подвел меня к какому-то юному древнему греку, который раскладывал на столе орехи. Я спросил, чем он занимается.

— Гармонией, — ответил юный древний грек. — Строю треугольник. Равносторонний треугольник из десяти орехов.

— Почему так мало? Я бы съел побольше, — сострил я.

— С меня хватит и десяти, — улыбнулся тот. — Десять — замечательное число. Оно есть сумма первых четырех натуральных чисел: 1 + 2 + 3 + 4 = 10 и относится к треугольным числам.

— Отчего же не к круглым? — фыркнул я.

— Оттого, что из слагаемых его можно построить треугольник. Видишь, — мальчик быстро разложил орехи треугольником, — в первом ряду — один орех, во втором — два, в третьем — три и, наконец, в четвертом — четыре.



Треугольник как треугольник. Но при чем здесь все-таки гармония? Так я этого и не выяснил, потому что капитан подвел меня к следующему столу, где другой юный древний грек делил натуральные числа. Выяснилось, что и он занимается гармонией: ищет гармонию числовых отношений. По словам этого «гармониста», в числах тоже, видите ли, есть своя гармония, основанная на отношениях все тех же четырех чисел: 1, 2, 3 и 4. И обнаружил эти гармонические отношения все тот же Пифагор.

Пифагор, Пифагор… У меня от него уже в ушах стреляет: пиф-паф, пиф-паф! И я очень обрадовался, когда капитан потащил меня к третьему столу. Длинному-предлинному. Здесь работал уже не мальчик, а самый что ни на есть древний грек с пышной курчавой бородой.

— Гиппáс, ученик Пифагора, — представился он.

Опять Пифагор! Я только вздохнул.

Побеседовав со стариком, мы узнали, что он возглавляет сейчас пифагорейскую школу и тоже изучает гармонию, на сей раз — звуков.

На столе у него лежала длинная линейка. На линейку была натянута струна. Бородач ущипнул ее, и она издала низкий гудящий звук. Потом он прижал струну пальцем посередине и предложил мне ущипнуть одну из половинок. Я не заставил себя упрашивать. Звук получился потоньше.

— Выше на целую октаву, — сказал капитан Единица.

— Как вы говорите? — переспросил Гиппас. — На октаву? Мы, греки, называем это иначе, но не в том суть.

Он разделил половинку струны снова пополам и предложил мне ущипнуть одну из четвертушек. Струна зазвучала еще выше, и опять на целую октаву. Потом мы заставляли звучать одну восьмую, одну шестнадцатую струны и каждый раз получали звук октавой выше предыдущего.

Было очень интересно, и я щипал вовсю, даже палец заболел. Пришлось спросить: долго это будет продолжаться? Но старик сказал — совсем недолго, если, конечно, щипать по одному разу, а не по двадцать, ибо Пифагор (слава Зевсу!) разделил струну всего на семь октав.

Тут я не выдержал и спросил:

— Уважаемый Гиппас, скажите, наконец, кто вы? Музыкант или математик?

— И то и другое вместе, — ответил он, пожав плечами. — Все мы здесь музыканты-математики. Ведь музыка построена на соотношении чисел. Я уже добрых полчаса об этом толкую. Октава, например, получается при делении струны пополам. Стало быть, это отношение двух к одному — 2 : 1…

— Допустим, — сказал я, — но что общего между музыкой и отношением чисел в ореховом треугольнике?

— Очень много, и сейчас ты в этом убедишься.

Гиппас прижал струну пальцем на расстоянии одной трети от края.

— Видишь, — пояснил он, — струна разделена на две неодинаковые части. Одна из них равна двум третям, другая — одной трети. Значит, длина всей струны относится к большей ее части как три к двум — 3: 2. Тронем большую часть струны — она зазвучит выше, чем вся струна…

— И теперь уже не на октаву, а всего лишь на квинту, — вставил капитан.

— Да, да, — закивал Гиппас, — по-вашему это называется квинтой. Снова отложим на меньшем отрезке струны две трети — получим…

— Опять квинту! — подхватил я.

— Ты определенно делаешь успехи! — просиял Гиппас. — Еще раз разделим таким же способом меньшую часть струны и так далее… Пока не дойдем до конца. И окажется, что на струне, состоящей из семи октав, укладывается двенадцать квинт.

— Подумать только! Точно двенадцать! — восхитился я.

— Гм… — Гиппас помедлил. — В том-то и беда, что не совсем точно. Двенадцать квинт чуть-чуть длиннее семи октав. Правда, разность между ними совсем ничтожна. Это легко подсчитать. Сложим семь октав — семь отрезков струны:



А теперь сложим двенадцать отрезков, образующих квинты:



— Остается вычесть из большей суммы меньшую, — сказал я. — 0,99999 — 0,99218 = 0,00781. Да, разность и в самом деле пустяшная.

Гиппас посмотрел куда-то вбок и вздохнул.

— Так-то оно так, и все же… Иногда пустяки портят всю музыку, — невесело пошутил он.

Я хотел спросить, что его так огорчает, да побоялся показаться невежей и поскорее перевел разговор на другую тему.

— Помнится, в ореховом треугольнике есть еще число 4. О нем вы пока ничего не сказали.

— В самом деле, — встрепенулся старик. — Между тем, отношение четырех к трем — 4 : 3 — тоже великолепное. Оно дает… Как это по-вашему? — обернулся он к капитану.

— Кварту, — подсказал тот.

Перейти на страницу:

Все книги серии Рассказы о музыке для школьников

Похожие книги

Почему не иначе
Почему не иначе

Лев Васильевич Успенский — классик научно-познавательной литературы для детей и юношества, лингвист, переводчик, автор книг по занимательному языкознанию. «Слово о словах», «Загадки топонимики», «Ты и твое имя», «По закону буквы», «По дорогам и тропам языка»— многие из этих книг были написаны в 50-60-е годы XX века, однако они и по сей день не утратили своего значения. Перед вами одна из таких книг — «Почему не иначе?» Этимологический словарь школьника. Человеку мало понимать, что значит то или другое слово. Человек, кроме того, желает знать, почему оно значит именно это, а не что-нибудь совсем другое. Ему вынь да положь — как получило каждое слово свое значение, откуда оно взялось. Автор постарался включить в словарь как можно больше самых обыкновенных школьных слов: «парта» и «педагог», «зубрить» и «шпаргалка», «физика» и «химия». Вы узнаете о происхождении различных слов, познакомитесь с работой этимолога: с какими трудностями он встречается; к каким хитростям и уловкам прибегает при своей охоте за предками наших слов.

Лев Васильевич Успенский

Детская образовательная литература / Языкознание, иностранные языки / Словари / Книги Для Детей / Словари и Энциклопедии
Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей