Читаем Ноль: биография опасной идеи полностью

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Генрихом Герцем: при освещении ультрафиолетовыми лучами цинковых электродов разрядника образование искр заметно облегчается. Как потом выяснилось, при освещении поверхности металла из нее вылетали электроны. Данный феномен, получивший название фотоэмиссии (испускание электронов под действием луча света), был загадкой для классической физики. Ультрафиолетовое излучение несет очень большое количество энергии, так что ученые, естественно, заключили, что для выбивания электрона из атома требуется большая энергия. Согласно волновой теории света, существует другой способ увеличить энергию светового луча: сделать его ярче. Очень яркий голубой свет, например, мог бы нести столько же энергии, как и тусклый ультрафиолет. Следовательно, яркий голубой свет должен был выбивать электроны из атомов, как мог это делать тусклый ультрафиолетовый луч.

Однако, как скоро показали эксперименты, ничего такого не происходило. Даже тусклый ультрафиолетовый луч (с высокой частотой волны) вызывает выбивание электронов из металла. Однако если хоть немного снизить частоту ниже критического порога, сделав свет чуть более красным, фотоэмиссия внезапно прекращается. Каким бы ярким ни был луч, если свет не того цвета, все электроны остаются в металле и ни один из них не вылетает. Это не то, что могла бы сделать световая волна.

Эйнштейн преодолел эту преграду — загадку фотоэлектрического эффекта, но его решение было еще более революционным, чем гипотеза Планка. Если Планк предположил, что колебания молекул квантованы, то Эйнштейн пришел к выводу, что сам свет распространяется маленькими порциями энергии — фотонами. Эта идея противоречила общепринятым взглядам, потому что означала, что свет — не волна.

С другой стороны, если энергия света упакована в маленькие пакеты, то легко объяснить фотоэлектрический эффект. Свет действует как пульки, которыми стреляют в металл. Когда пулька попадает в электрон, она его толкает. Если пулька имеет достаточно энергии (если ее частота достаточно высока), она выбивает электрон на свободу. Если же частица света не имеет достаточной энергии, чтобы выпихнуть электрон, тот остается на месте, а фотон отскакивает прочь.

Идея Эйнштейна блестяще объясняла фотоэлектрический эффект. Свет квантуется фотонами, что прямо противоречило волновой теории света, не подвергавшейся сомнению на протяжении более чем столетия. Вместо этого она предполагала, что свет обладает природой и волны, и частицы. Хотя свет иногда ведет себя как частица, в других случаях он действует как волна. На самом деле свет не частица и не волна, а их странная комбинация. Такую концепцию трудно воспринять. Однако эта идея лежит в основе квантовой теории.

Согласно ей, все на свете — свет, электроны, протоны, маленькие собачки — имеют свойства и волны, и частицы. Однако если тела одновременно и частицы, и волны, чем они могут быть? Математики знают, как их описать: это волновые функции, решения дифференциальных уравнений, называемых уравнениями Шрёдингера. К несчастью, это математическое описание не имеет интуитивного значения, практически невозможно представить себе, что такое эти функции[31]. Более того, по мере того как физики выявляли тонкости квантовой механики, обнаруживались все более странные вещи. Возможно, самая невероятная из них вызвана нолем в уравнениях квантовой механики — это энергия нулевых колебаний.

Эта странная сила входит в математические уравнения квантовой вселенной. В середине 1920-х годов немецкий физик Вернер Гейзенберг обнаружил, что эти уравнения имеют шокирующее следствие: неопределенность. Сила ничто как раз и вытекает из принципа неопределенности Гейзенберга.

Принцип неопределенности имеет отношение к возможности описывать свойства частицы. Например, если мы хотим найти определенную частицу, нам нужно определить ее положение и скорость — узнать, где она находится и с какой скоростью движется. Принцип неопределенности Гейзенберга говорит нам, что произвести такое простое действие мы не можем. Как бы мы ни старались, невозможно одновременно точно определить местоположение и скорость частицы. Дело в том, что сам акт измерения уничтожает часть информации, получить которую мы стремимся.

Перейти на страницу:

Похожие книги

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий
Экономика творчества в XXI веке. Как писателям, художникам, музыкантам и другим творцам зарабатывать на жизнь в век цифровых технологий

Злободневный интеллектуальный нон-фикшн, в котором рассматривается вопрос: как людям творческих профессий зарабатывать на жизнь в век цифровых технологий.Основываясь на интервью с писателями, музыкантами, художниками, артистами, автор книги утверждает, что если в эпоху Возрождения художники были ремесленниками, в XIX веке – богемой, в XX веке – профессионалами, то в цифровую эпоху возникает новая парадигма, которая меняет наши представления о природе искусства и роли художника в обществе.Уильям Дерезевиц – американский писатель, эссеист и литературный критик. Номинант и лауреат национальных премий.В формате PDF A4 сохранён издательский дизайн.

Уильям Дерезевиц

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература