Читаем Ноль: биография опасной идеи полностью

В области чисел умножение означает растяжение — в буквальном смысле слова. Представьте себе, что числовая ось — это резиновая лента с делениями на ней (рис. 4). Умножение на два может рассматриваться как растяжение резиновой ленты вдвое: то деление, которое приходилось на отметку «один», теперь переместилось на «два»; приходившееся на «три» — на «шесть». Аналогично умножение на одну вторую сходно с некоторым сжатием резиновой ленты: деление на «два» перемещается на «один», деление на «три» — на «полтора».

Рис. 4. Резиновая лента для умножения

Но что происходит при умножении на ноль? Сколько бы раз ни взять ноль, все равно будет ноль, и все деления соберутся на ноле. Резиновая лента порвалась. Вся числовая ось нарушилась.

К несчастью, нет способа обойти этот неприятный факт. Любое число ноль раз — ноль; это свойство нашей системы счисления. Чтобы в повседневно используемых числах был смысл, они должны обладать тем, что именуется свойством дистрибутивности, что лучше всего видно на примере. Представьте себе, что в магазине игрушек мячи продаются по две штуки, а кубики — по три. Соседний магазин игрушек торгует наборами из двух мячей и трех кубиков. Каждая упаковка из двух мячей и каждая упаковка из трех кубиков — такой же один предмет, как и упаковка с набором мячей и кубиков из соседнего магазина. Если быть последовательным, то покупка семи упаковок мячей и семи упаковок кубиков в первом магазине должна быть тем же самым, что и покупка семи наборов во втором. Это и есть свойство дистрибутивности. Используя математическую запись, мы выразили бы это так: 7 × 2 + 7 × 3 = 7 × (2 + 3). Все получается правильно.

Если же применить это свойство к нолю, получается нечто странное. Мы знаем, что 0 + 0 = 0. Возьмем в качестве примера число 2. 2 + 0 = 2 + (0 + 0); согласно свойству дистрибутивности, мы также знаем, что 2 × (0 + 0) — то же самое, что 2 × 0 + 2 × 0. Однако это означает, что 2 × 0 = 2 × 0 + 2 × 0. Чем бы ни было 2 × 0, когда вы прибавляете это число к самому себе, оно остается тем же самым, очень похожим на ноль. На самом деле это он и есть. Если вычесть 2 × 0 из обеих частей равенства, мы увидим, что 0 = 2 × 0. Таким образом, что бы вы ни делали, умножение числа на ноль дает ноль. Это зловредное число сжимает числовую ось в точку. Однако сколь бы досадным ни было это свойство, истинная сила ноля делается очевидной при делении, а не умножении.

Если умножение растягивает числовую ось, то деление сжимает ее. Умножьте какое-нибудь число на два, и вы растянете резиновую ленту — числовую ось — вдвое; разделите результат на два, и резиновая лента сожмется вдвое, произведя действие, обратное умножению. Производя деление, вы уничтожаете следствие умножения: метка на резиновой ленте, переместившаяся на новое место, возвращается в прежнее положение.

Мы видели, что произошло при умножении числа на ноль: числовая ось была уничтожена. Деление на ноль должно было быть противоположностью умножению на ноль — оно должно было бы восстановить числовую ось. К несчастью, этого не происходит.

В предыдущем примере мы видели, что 2 × 0 есть 0. Таким образом, чтобы совершить действие, обратное умножению, мы должны предположить, что (2 × 0) / 0 вернет нас к 2. Точно так же (3 × 0) / 0 должно вернуть нас к 3, (4 × 0) / 0 — к 4… Однако каждое из чисел 2 × 0, 3 × 0, 4 × 0, как мы видели, равно 0, так что (2 × 0) / 0 = 0 / 0, (3 × 0) / 0 = 0 / 0, (4 × 0) / 0 = 0 / 0. Увы, это означает, что 0 / 0 = 2, а также 0 / 0 = 3, 0 / 0 = 4… Это же бессмыслица!

Странные вещи происходят и в том случае, если мы посмотрим на 1 / 0 с другой точки зрения. Умножение на ноль должно произвести действие, обратное делению на ноль, так что 1 / 0 × 0 должно быть равно 1. Однако мы видели, что любое число, умноженное на ноль, дает ноль. Нет такого числа, которое, умноженное на ноль, давало бы 1, по крайней мере, среди чисел, с которыми мы встречались.

Хуже всего то, что если вы необдуманно разделите на ноль, вы можете разрушить все основы логики и математики. Достаточно всего один раз — один-единственный — разделить на ноль, и это позволит вам математически доказать все что угодно. Вы сможете доказать, что 1 + 1 = 42, а из этого вывести, что Эдгар Гувер был инопланетянином, Уильям Шекспир — узбеком, и даже что небо — в горошек. (Приложение А поможет вам доказать, что Уинстон Черчилль был морковкой.)

Умножение на ноль уничтожает числовую ось. Однако деление на ноль разрушает всю систему математики.

Это простое число обладает большим могуществом. Оно стало самым важным математическим инструментом. Однако благодаря своим странным математическим и философским свойствам ноль пришел в столкновение с фундаментальной западной философией.

<p>Глава 2</p><p>Из ничего ничто и выйдет</p><p>Запад отвергает ноль</p>

Ничто не возникает из ничего.

Лукреций. «О природе вещей»[4]
Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука