Всем известен, говорит Хинтон, способ получения на бумаге изображений, похожих на насекомых. На бумагу капают чернила и складывают ее пополам. Получается очень сложная симметричная фигура, похожая на фантастическое насекомое. Если бы ряд таких изображений увидел человек, совершенно не знакомый со способом их приготовления, то он, рассуждая логически, должен был бы прийти к заключению, что они получены путем складывания бумаги, т.е. что их симметрично расположенные точки соприкасались. Точно также и мы, рассматривая и изучая формы строения живых существ, напоминающие фигуры на бумаге, полученные описанным способом, можем заключить, что симметричные формы насекомых, листьев, птиц и т.п. создаются процессом, аналогичным складыванию. Симметричное строение живых тел можно объяснить если не складыванием пополам в четвертом измерении, то, во всяком случае, таким же, как при складывании, расположением мельчайших частиц, из которых строятся эти тела. В природе существует очень любопытный феномен, создающий совершенно правильные чертежи четвертого измерения – нужно только уметь их читать. Они видны в фантастически разнообразных, но всегда симметричных фигурах снежинок, в рисунках цветов, звезд, папоротников и кружев морозных узоров на стекле. Капельки воды, осаждаясь на холодное стекло или лед, немедленно начинают замерзать и расширяться, оставляя следы своего движения в четвертом измерении в виде причудливых рисунков. Морозные узоры и снежинки – это фигуры четвертого измерения, таинственные
Формы живых тел, цветы, папоротники созданы по тому же принципу, хотя и более сложно. Общий вид дерева, постепенно расширяющегося в ветвях и побегах, есть как бы диаграмма четвертого измерения,
В книге проф. Блоссфельдта* о художественных формах в природе читатель может найти несколько превосходных иллюстраций к приведенным выше положениям.
* Karl Blossfeldt, Art Forms in Nature. London, 1929.
Живые организмы, тела животных и людей построены по принципу симметричного движения. Чтобы понять эти принципы, возьмем простой схематический пример симметричного движения: представим себе куб, состоящий из двадцати семи кубиков, и будем мысленно воображать, что этот куб расширяется и сокращается. При расширении все двадцать шесть кубиков, расположенные вокруг центрального, будут удаляться от него, а при сокращении опять к нему приближаться. Для удобства рассуждения и для большего сходства нашего куба с телом, состоящим из молекул, предположим, что кубики измерения не имеют, что это просто точки. Иначе говоря, возьмем только центры двадцати семи кубиков и мысленно соединим их линиями как с центром, так и между собой.
Рассматривая расширение куба, состоящего из двадцати семи кубиков, мы можем сказать, что каждый из этих кубиков, чтобы не столкнуться с другими и не помешать их движению, должен двигаться, удаляясь от центра, т.е. по линии, соединяющей его центр с центром центрального кубика. Это – первое правило:
Далее мы видим в нашем кубе, что не все линии, соединяющие двадцать шесть точек с центром, равны. Линии, которые идут к центру от точек, лежащих на углах куба, т.е. от центра угловых кубиков, длиннее линий, которые соединяют с центром точки, лежащие в центрах шести квадратов на поверхностях куба. Если мы предположим, что межмолекулярное пространство удваивается, то одновременно увеличиваются вдвое все линии, соединяющие двадцать шесть точек с центром. Линии эти не равны, следовательно молекулы движутся не с одинаковой скоростью, – одни медленнее, другие быстрее, при этом находящиеся дальше от центра движутся быстрее, находящиеся ближе – медленнее. Отсюда можно вывести второе правило:
Наблюдая расширение куба, мы видим, что расстояние между всеми двадцатью семью кубиками увеличилось пропорционально прежнему.