Устройство представляется компактным и надежным, а главное, автономным источником энергии, то есть не зависящим от наличия солнечного света.
Источники продольных волн, и теория их работы, рассмотрены, в частности, Профессором Кириллом Павловичем Бутусовым, Санкт-Петербург. Один из вариантов – простой электрический сферический уединенный конденсатор, площадь поверхности которого периодически изменяется. При изменении поверхности любого заряженного тела, изменяется поверхностная плотность заряда, благодаря чему, в окружающем пространстве создается продольная волна.
Впрочем, источником продольных волн может быть любое изменение плотности энергии или вещества, в том числе, неэлектромагнитной природы. Николай Александрович Козырев изучал волны «плотности времени» низкой частоты, которые создаются процессами растворения или кристаллизации, то есть, необратимыми процессами, идущими с изменениями энтропии. Нас, конечно, интересуют высокочастотные процессы, но физику явления необходимо описать максимально подробно. В будущем, возможно, найдутся такие конструктивные решения, которые позволят получать большую, практически значимую, электрическую мощность, при использовании низкочастотных продольных волн. Дело в том, что существуют природные суточные и сезонные изменения плотности эфира. Этот источник энергии требует изучения, для создания «приливных эфирных электростанций», или, так сказать, «эфирнобарометрических» генераторов энергии, работающих за счет натуральных изменений плотности эфира.
Практический способ создания продольных волн был также показан Спартаком Михайловичем Поляковым в книге «Введение в экспериментальную гравитонику», Москва, издательство «Прометей», 1991 год. Спартак Михайлович десятки лет занимался вопросами создания гравитационного излучения, и экспериментально показал способы генерирования продольных волн. Для наших целей, подходит его высокочастотный способ, основанный на магнитострикционном эффекте. Это и есть «изменение объемной плотности вещества», о котором писал Профессор Бутусов. Для увеличения эффекта, поверхность излучателя может быть металлизирована, и электрически заряжена.
По аналогии, предлагается также изучить такой метод создания продольных волн, как электрострикция, то есть объемное сжатие вещества в электрическом поле. В отличие от магнитострикции, требующей источник тока для создания переменного магнитного поля, для электрострикции необходимо создать только переменное электрическое поле, а потребление от первичного источника может быть минимальным. Существуют стандартные электрострикционные излучатели продольных волн, выпускаемые в виде сферических или цилиндрических конденсаторов с пьезокерамическим диэлектриком.
Также отметим такой способ вызывать ток на выходе экранированного фотоэлемента, как переменное или вращающееся электрическое поле. Затраты первичного источника поля могут быть небольшими, по сравнению с мощностью, генерируемой фотоэлементом.
Итак, эффекты, найденные в экспериментах по импульсному воздействию на кристаллические фотоэлементы, а именно,
Инерциальный ток электронов обусловлен наличием массы покоя электронов, а масса покоя частицы и ее инерция – это один из эфиродинамических эффектов. Аналогичным образом действует «ударное возбуждение» колебаний в электрической цепи, которое мы рассматривали в главе про работы Тесла. Следовательно, избыточная энергия данных процессов есть результат преобразования свободной энергии эфира. Мы не можем получить «нечто из ничего», все явления, которые мы рассматриваем, могут иметь место только как различного рода преобразования формы энергии.
Данные эффекты предлагаются для коммерциализации и создания компактных источников энергии. Требуется их независимая проверка и экспертиза.