Данный контур с током похож на V-образный вариант, причем, силы отталкивания двух соседних участков проводника на входе тока в контур создают силу, которая сонаправлена с результирующей силой, образуемой в области внутреннего изгиба кардиоиды. Весьма перспективная схема, на мой взгляд. Эксперименты в моей домашней лаборатории 1991–1996 года показали достаточно хорошие результаты.
Проводники питания, в данной схеме, могут быть скручены в витую пару. Проводник может быть один, или контур может быть изготовлен как многовитковая катушка. При наблюдениях действующих сил F12 и F21, целесообразно не закреплять проводники на каркасе, но при измерениях движущей силы проводники необходимо закрепить, например, на жесткой пластине.
Эксперименты с такими движителями простые, но они дают разные результаты при различной постановке эксперимента, то есть, на величину движущей силы влияет несколько факторов. Механические аналогии электрокинетических движителей, которые также могут иметь практическое применение в аэрокосмической технике, помогают понять, почему результаты экспериментов с электрокинетическими движителями зависят не только от силы тока, но и от импульсного режима работы (тока в проводниках).Глава 5 Криволинейное движение тела
Всем хорошо знакомы силы инерции, возникающие при ускорении или торможении движущегося тела. В терминах эфиродинамики, можно сказать, что «эфир проявляет себя» при ускорении тел. Впрочем, существование эфирной упругой среды можно обнаружить и для неподвижных тел, в процессах их упругой деформации (растяжения или сжатия межатомных связей), но мы рассмотрим эти эффекты позже.
Ускорение криволинейного движения зависит от кривизны траектории (радиуса), а создаваемая при измерении траектории центробежная сила F определяется по простой формуле, второй закон Ньютона:
F = ma
(F.1) где F – сила, m – масса движущегося тела, а – ускорение криволинейного движения.