ρ1 = 1/R [1/m]
(F.12) где R есть радиус, ρ1 – классическая линейная кривизна.Павел Дмитриевич Успенский определял «время», как такое направление движения линии, плоскости или объекта, которое в объекте не содержится[83]. Например, процесс прямолинейного движения всей линии в пространстве, в направлении, которое в ней не содержится, смещает ее вдоль поверхности динамического двумерного пространства. например, плоскости. Если эта поверхность не является плоской, имеет кривизну и замкнута, то она образует сферу, и ее цикличным резонансным параметром является двумерная кривизна:
ρ2 = 2/R [1/m]
(F.13)Здесь ρ2 – это классическое понятие кривизны сферы, применяемое в современной геометрии. В нашем понимании, этот параметр характеризует скорость процесса существования динамического двумерного пространства, и при цикличности данного процесса, кривизна соответствует периоду повторения положения точки, при ее движении по поверхности сферы. Подобным образом определяется и кривизна трехмерного пространства, хотя этого понятия нет в учебниках геометрии:
ρ3 = 3/R [1/m]
(F.14)