Кроме магнитных явлений, можно использовать электрические процессы, например, вопрос о создании продольной волны также был рассмотрен в другой работе Профессора Бутусова «Симметризация уравнений Максвелла – Лоренца» [42], в которой он показал, что электрически заряженная сфера может излучать продольную волну, при изменении радиуса сферы, то есть ее поверхности, при сохранении величины электрического заряда, находящегося на данной поверхности. Данный метод – это один из вариантов реализации технологии, суть которой состоит в изменении плотности энергии. Изменение величины поверхности, при сохранении количества заряда, создает изменение плотности заряда на единицу поверхности. Окружающая эфирная среда вынуждена компенсировать данное изменение, и в ней создается продольная волна. Впрочем, как показал Профессор Бутусов, можно создавать продольные волны без электромагнитных методов, путем изменения объемной плотности вещества.
В связи с этим, имеет смысл напомнить метод, который описан Поляковым в книге «Экспериментальная гравитоника» [4]. Поляков рассматривает вопрос генерации гравитационных волн при высокочастотном перемагничивании ферромагнетика, то есть при объемной магнитострикции вещества. Поскольку, при этом явлении, изменяется плотность вещества, то есть плотность энергии в пространстве, занимаемом веществом, то объемная магнитострикция является частным случаем изменения плотности энергии. Подобным образом, можно создавать продольные волны при модуляции плотности любого вещества, в том числе, газов и плазмы.
Рассмотрим суть и технические возможности схемы, которую предложил Вадим Александрович Чернобров в книге [93]. Он описал способ и устройство для управления темпоральными характеристиками физических и химических процессов, путем создания модели магнитного монополя (квазимонополя), в котором образуется сходящаяся волна от нескольких источников, расположенных на сферическом корпусе. В соответствии с данным способом, в многослойной сферической конструкции, где каждый из слоев (так называемая «электромагнитная рабочая поверхность») является совокупностью электромагнитов, путем последовательного включения слоев создается волна, сходящаяся к центру устройства. Устройство, по схеме Черноброва, имеет один магнитный полюс снаружи и другой магнитный полюс внутри, таким образом, моделируется макроскопический магнитный монополь.
Мы полагаем, что при условии синфазной работы всех источников волн, интерференция продольных волн обеспечивает некоторое изменение величины плотности энергии пространства в фокусе системы.
Экспериментальные факты состоят в том, что расположенные в центре устройства датчики, например, механические или электромагнитные осцилляторы, показывают изменение периода собственных колебаний. Мы обеспечивали экранирование датчиков от теплового и другого электромагнитного влияния. Таким образом, можно утверждать, что датчики замедляют или ускоряют свой период колебания в зависимости от создаваемой плотности энергии в центре устройства.
Однако эксперименты, проведенные с использованием такого устройства, требуют тщательной настройки всех источников волн для обеспечения их синфазной работы. При этом стабильность работы всей системы зависит от стабильности работы каждого из источников волн. Повышение частоты импульсов приводит к увеличению эффекта, но оно ограничено параметрами электромагнитов и генератора импульсов. Кроме того, для увеличения эффекта необходимы более мощные источники электропитания, поскольку сила тока в обмотках электромагнитов определяет величину магнитного поля создаваемого квазимонополя.
Поскольку эффективность подобных систем непосредственно зависит от частоты и величины изменений плотности энергии в пространстве, то мы предлагаем в следующей версии реализации данного устройства применить плазменные оболочки вместо электромагнитных рабочих поверхностей, что позволит значительно повысить удельные характеристики устройства. Рассмотрим основные технические принципы работы, и наметим пути развития данного метода. Перейдем к рисункам. На рис. 144 показана схема основного элемента – трехслойного электромагнитного излучателя.
Рис. 144. Трехвитковый излучатель