Читаем Новые рассказы Рассеянного Магистра полностью

— Что их считать! — отмахнулся Сева. — У собак есть свой собственный террариум. Давайте-ка поспешим на собачьи бега, а то они уже начались.

Тут все посмотрели на Пончика, который, соскучившись, бегал вокруг стола, как лошадь по манежу. Бутерброд с колбасой заставил его остановиться и прекратить свой цирковой номер.

— Дамы и господа, — провозгласил Нулик, — одни бега закончились, начинаются новые. На старте четыре рысака: пинчер под номером один, болонка под номером два, третий номер у спаниеля, четвёртый — у таксы. Приготовились, внимание, старт! А теперь вы решайте задачу, а я чуток отдохну.

Сева погрозил ему кулаком

— Пользуешься тем, что мы гости воспитанные и не можем тебе ответить, как следует?

— Пока вы пререкаетесь, собаки давно уже поравнялись, — сказал Олег, протягивая бумажку. — Вот вам моментальная съёмка бега. По ней вы можете легко убедиться, что все четыре собаки встретились в первый раз на расстоянии двух третей дорожки. Если, конечно, считать от старта.

— Ха! — Нулик язвительно усмехнулся, — Такую фотографию и я сделаю. Только у меня собаки встретятся на трёх четвертях дорожки, считая от старта, а у Севы на семи девятых. Нет, ты мне доказательства подавай!

— Устами младенца глаголет истина, — поддакнул Сева.

— Какая там истина! — огрызнулась Таня. — Уж если Олег говорит две трети, значит, две трети!

Но Нулик был неумолим.

— Пусть докажет.

И Олег стал доказывать.

— Рассмотрим сперва бег двух собак: таксы, которая бежит медленнее всех, и спаниеля. Спаниель бежит вдвое быстрее таксы. Ясно, что он с самого начала её опередит и потому встретится с нею только на обратном пути. Обозначим теперь через икс путь, пройденный таксой до встречи со спаниелем, а длину беговой дорожки — буквой а. В таком случае спаниель до встречи с таксой пройдёт путь, равный а + а — х, то есть 2а — х. На этой бумажке изображён момент их встречи.

— Пока всё правильно, — заметил Нулик. — Посмотрим, что будет дальше.



— А дальше, — продолжал Олег, — примем скорость таксы за единицу. Тогда скорость спаниеля будет равна двум. Спрашивается, сколько времени потратит такса, чтобы встретиться со своим соперником?

— Ясно, икс секунд, — заявил президент.

— А может быть, и минут, — поправил Олег, — но это неважно. Ну, а спаниель потратит на свой путь вдвое меньше времени, то есть 2a-x / 2. Остаётся оба выражения приравнять между собой — ведь собаки-то встретились!

— Приравняем, — согласился Нулик. — Получим…

— Мы пахали, — в тон ему сказала Таня.

— Получим, что x = 2a-x / 2, — невозмутимо продолжал Олег.

— А отсюда любой школьник найдёт, что… Что он найдёт?

— Он найдёт, что 2х = 2а — х. Откуда Зх = 2а, а уж один икс равен двум третям а: х = 2/3а, — закончил Олег. — Именно это я и сфотографировал.

— Принимается! — внушительно изрёк Нулик. — Но где же другие собаки?

— Будут тебе и другие. Рассуждаю так: за то время, что такса одолела 2/3 дорожки, болонка, которая бежит в четыре раза быстрее таксы, пройдёт 8/3 пути, то есть 2 2/3а. Иначе говоря, болонка успела пробежать дважды дорожку, да ещё 2/3 её и, следовательно, тоже поравнялась и с таксой, и со спаниелем.

— Блеск!.. — закричал Нулик. — Давай дальше!

— А дальше остаётся самый быстроходный пёс — карликовый пинчер. Он бежит в восемь раз быстрее таксы и сумел за то же время, что и она, пробежать путь, равный 16/3а, то есть 5 1/3а. Значит, пробежав беговую дорожку пять раз, пинчер на шестом разе, идя навстречу таксе, пробежал ещё 1/3а.

Итак, все собаки встретились одновременно. А вот и схема бега:



Но Нулик всё ещё переходил от восторга к сомнению: — Пока что всё правильно. Но что же дальше? Когда собаки встретятся во второй раз, и в третий, и в двадцатый?

— Не так скоро, — отвечал Олег. — Для того чтобы всем встретиться вторично, таксе надо пробежать дорожку дважды, то есть пройти путь 2а. За это время спаниель пробежит 4а, болонка — 8а, а пинчер — 16а.

— Тут все четыре рысака встретятся у старта, и всё начнётся сначала, — подсчитал Сева.

— Само собой. Впрочем, пусть наш сомневающийся президент соблаговолит сам заняться этим на досуге.

— Будет сделано! — отрапортовал Нулик.

— А теперь спокойной ночи! — сказал я, во второй раз за весь вечер вмешиваясь в ход заседания.

— Спокойной ночи у меня лично не будет! — вздохнул Нулик.

Этой цитатой из Магистрова послания завершилось третье, юбилейное, сборище клуба КРМ.

Репортаж Рассеянного Магистра

ПОСЛЕ НАС ХОТЬ ПОТОП!

Прощай, столица Терранигугу! Уа-уа!

Сверхреактивный экспресс мчит нас с Единичкой на Дальний Запад. Так как особняк Джерамини-младшего рухнул, скрыв под своими обломками тайну похищенной марки, нам остаётся только одно, догнать его хозяина. Может быть, он расскажет нечто такое, что поможет найти преступника. Ведь в нашем детективном деле и небольшая деталь иной раз оказывается решающей.

Перейти на страницу:

Все книги серии Рассеянный Магистр

Магистр Рассеянных Наук
Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра». Это помогает им развивать наблюдательность, совершенствовать свою математическую логику и пополнять знания не только по математике, но и по другим отраслям наук. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся. Герои книги попадают в экзотические страны, катаются на льдине, гуляют по краю кратера вулкана, а также подбирают математические ключи к любому замку и решают самые трудные задачи. Вместе с ними читатель узнает парадоксы и легко запоминает правила самой точной науки в мире, а также астрономии, физики и истории.Для младшего школьного возраста.

Владимир Артурович Левшин

Детская образовательная литература / Книги Для Детей

Похожие книги

Удивительные истории о существах самых разных
Удивительные истории о существах самых разных

На нашей планете проживает огромное количество видов животных, растений, грибов и бактерий — настолько огромное, что наука до сих пор не сумела их всех подсчитать. И, наверное, долго еще будет подсчитывать. Каждый год биологи обнаруживают то новую обезьяну, то неизвестную ранее пальму, то какой-нибудь микроскопический гриб. Плюс ко всему, множество людей верят, что на планете обитают и ящеры, и огромные мохнатые приматы, и даже драконы. О самых невероятных тайнах живых существ и организмов — тайнах не только реальных, но и придуманных — и рассказывает эта книга.Петр Образцов — писатель, научный журналист, автор многих научно-популярных книг.

Петр Алексеевич Образцов

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука