— Ах вот оно что! — Взгляд у Нулика стал жестким. — Ну ничего! Мы ещё посмотрим, кто кого. Не сомневаюсь, что Магистр одержит наконец эту как её пиррову победу и вернётся к нам на щите.
— Нет, что он говорит! — всплеснула руками Таня. — Ведь пиррова победа ничуть не лучше поражения!
— Опять небось иносказательное выражение на мою голову! — недовольно пробурчал президент, очень, впрочем, смущённый своим промахом.
— Опять, — посочувствовал я. — Оно связано с П
— Значит, пиррова победа — победа мнимая! — воскликнул Нулик. — Тогда не хочу я, чтобы Магистр одержал такую победу.
— Очень вам признателен, ваше президентство, — сказал Сева. — Если можно, пожелайте ему также, чтобы он вернулся домой не на щите, а со щитом, как и полагается победителю. С вашего позволения, на щите приносили с поля брани только побеждённых.
После этого ехидного замечания заседание вошло в обычное русло, и мы занялись задачами. Первая же из них вызвала оживленные споры.
В самом деле есть у палки середина или нет? Для решения этого животрепещущего вопроса президент не пожалел даже собственного карандаша. Он сделал на нём ножом отметину посередине и разрезал пополам.
— Где середина? Нет её! — Затем Нулик снова соединил обе половинки карандаша. — .Вот она, середина! — и снова разъединил. — Опять исчезла!
Так он играл довольно долго, ожидая, вероятно, исчерпывающего объяснения со стороны. Но объяснения всё не было. По правде говоря, я и сам не знал, каким образом объяснить ребятам этот забавный парадокс, чем-то похожий на софизмы Зен
— Мне кажется, дело здесь в том, — решился я наконец, — что слово «середина» имеет смысл лишь тогда, когда речь идёт о целом отрезке, в данном случае о целом карандаше. Как только карандаш разрезан пополам, слово «середина» теряет свой смысл. Карандаш, как целое, исчез. Остались две его половинки, и у каждой из них своя середина. Кроме того, середина — это точка, а точка в математике — понятие условное. Нет у неё ни длины, ни ширины, ни толщины. Значит, условно и понятие «середина». Вообразить точку, называемую серединой, можно, но воткнуть в неё реально существующую иглу — пусть самую тонкую, самую острую — нельзя.
— Но ведь втыкаем же мы иглу циркуля в центр окружности? — возразил президент.
— Конечно, втыкаем, но неглубоко, — пошутил я. — И так как всякому овощу своё время…
— …не станем углубляться в этот вопрос! Это вы хотели сказать? — спросил Нулик язвительно.
Я с сожалением развел руками.
— Что делать!
— Понимаю! — вздохнул президент. — Переходим к следующей задаче.
— К той, что задал Магистру Главный Кубист и Шарист? — спросил Сева.
— К той самой, — кивнул Нулик. — И какой же он неблагодарный, этот Кубист и Шарист! Магистр решил его задачу, а он даже спасибо не сказал!
— С чего ты взял, что Магистр решил задачу?
— А разве нет? Ведь шар в самом деле можно вписать в куб, и в кубе после этого ещё останется немножко незаполненного места. Стало быть, объём и поверхность куба чуть больше, чем у шара.
— Положим, не чуть, — сказал Сева, — а примерно раза в два. Но дело ведь не в этом, а в том, сколько потребуется бумаги, чтобы обклеить шарики и кубики с увеличенными в восемь раз объёмами.
— Наверное, для этого надо узнать, во сколько раз увеличилась при этом поверхность, — сообразил Нулик.
— Наконец я слышу речь не мальчика, но мужа! — сказал Сева, не устояв перед соблазном лишний раз процитировать Пушкина. — И право же, это совсем нетрудно.
— Кому как! — мрачно буркнул Нулик.
— Начнём с шара, — продолжал Сева, не обращая внимания на эту реплику. — Сперва займемся его объёмом. Как и всякий объём, объём шара измеряется в кубических единицах и пропорционален кубу его радиуса. Значит, если объём увеличился в восемь раз, то радиус увеличился только в два раза.
— Как так?