Читаем Новый мир. № 7, 2003 полностью

Одним из признаков высшего совершенства в искусстве является лаконизм. Смею сказать — вряд ли что-нибудь сравнится в этом отношении с шедеврами математики и теоретической физики. Здесь нередки случаи, когда итогом жизни гения являются всего несколько символьных строчек. Достаточно привести один пример. Уравнения электромагнитного поля (уравнения Максвелла) можно записывать по-разному, но в самой компактной, так называемой тензорной, форме они содержат всего пятнадцать символов. В этой строчечке умещается вся классическая электродинамика, она описывает принцип и детали действия всех электрических машин и приборов, распространение радиоволн и геометрическую оптику. Ее содержание расшифровывается до сих пор, разворачиваются все новые и новые лепестки этого фантастического веера» (http://magazines.russ.ru/znamia/2002/6/rabot.html).

Ученик, который приходит на кружок, приходит на математическую олимпиаду, который перелистывает страницы «Кванта», сталкивается именно с этим великим или даже величайшим языком.

Математика ни в коем случае не сводится к набору инструкций или правил действия с числами, формулами или геометрическими фигурами. (Нужно сказать, что на сайте находится одно из лучших собраний геометрических задач с решениями — http://zadachi.mccme.ru, — но, не знаю почему, оно очень часто оказывается недоступно, хотелось бы, чтобы такого рода технических накладок было поменьше — эти мелочи портят и убивают очень хорошо сделанную огромную работу.) Все это необходимо уметь, но гораздо важнее другие умения: например, способность отстраниться, отодвинуться от задачи и взглянуть на нее с позиций более общих или, напротив, попытаться сначала найти частное решение для простого случая, которое потом можно было бы обобщить.

Это та математика, которая несравнимо ближе к подлинной математической науке, чем стандартный общешкольный инструктаж.

На сайте, кроме полного перечня всех математических олимпиад и их результатов, есть и список московских математических школ. Здесь есть ссылки на сайты 2-й (http://www.school2.ru), 57-й (http://www.sch57.msk.ru), 91-й (http://www.91.ru) и других знаменитых и новых школ. Конечно, эти школы предъявляют к ученику довольно высокие требования, и если на кружок может прийти любой ученик, то поступить, скажем, во 2-ю школу смогут немногие — уже, как правило, выбравшие математическое образование. Но и эти школы совершенно необходимы, потому что, если ребенок значительно опережает по своему математическому развитию сверстников, его потребность в познании нужно удовлетворять, его энергию нужно использовать в мирных целях, а то ведь могут пострадать и он сам, и окружающие. Если ребенок хочет учиться математике, его нужно учить — то есть создавать максимально благоприятные условия и со стороны учителей, и, что также крайне важно, со стороны коллектива одноклассников. Это и пытаются дать математические школы, хотя я далек от идеализации сегодняшнего состояния дел в специализированном математическом образовании школьников.

Одним из самых интересных и важных материалов, представленных на сайте, является, как уже было сказано, собрание статей академика Владимира Арнольда, посвященных математическому образованию (http://www.mccme.ru/edu/index.php?ikey=articles).

Состояние этого образования вызывает у него крайнюю озабоченность. В статье «Математика и математическое образование в современном мире» он пишет:

«Выхолощенное и формализованное преподавание математики на всех уровнях сделалось, к несчастью, системой. Выросли целые поколения профессиональных математиков и преподавателей математики, умеющих только это и не представляющих себе возможности какого-либо другого преподавания математики.

Наиболее характерными приметами формализованного преподавания является изобилие немотивированных определений и непонятных (хотя логически безупречных) доказательств. Отсутствие примеров, отсутствие анализа предельных случаев и предела применимости математических теорий, отсутствие чертежей и рисунков — столь же постоянный недостаток математических текстов, как и отсутствие внематематических приложений и мотивировок понятий математики.

Уже Пуанкаре отмечал, что есть только два способа научить дробям — разрезать (хотя бы мысленно) либо пирог, либо яблоко. При любом другом способе обучения (аксиоматическом или алгебраическом) школьники предпочитают складывать числители с числителями, а знаменатели — со знаменателями.

Перейти на страницу:

Похожие книги

Дети мои
Дети мои

"Дети мои" – новый роман Гузель Яхиной, самой яркой дебютантки в истории российской литературы новейшего времени, лауреата премий "Большая книга" и "Ясная Поляна" за бестселлер "Зулейха открывает глаза".Поволжье, 1920–1930-е годы. Якоб Бах – российский немец, учитель в колонии Гнаденталь. Он давно отвернулся от мира, растит единственную дочь Анче на уединенном хуторе и пишет волшебные сказки, которые чудесным и трагическим образом воплощаются в реальность."В первом романе, стремительно прославившемся и через год после дебюта жившем уже в тридцати переводах и на верху мировых литературных премий, Гузель Яхина швырнула нас в Сибирь и при этом показала татарщину в себе, и в России, и, можно сказать, во всех нас. А теперь она погружает читателя в холодную волжскую воду, в волглый мох и торф, в зыбь и слизь, в Этель−Булгу−Су, и ее «мысль народная», как Волга, глубока, и она прощупывает неметчину в себе, и в России, и, можно сказать, во всех нас. В сюжете вообще-то на первом плане любовь, смерть, и история, и политика, и война, и творчество…" Елена Костюкович

Гузель Шамилевна Яхина

Проза / Современная русская и зарубежная проза / Проза прочее