Рис. 5.7.
Сила, действующая между двумя частицами, направлена по прямой между ними (и по третьему закону Ньютона сила, действующая на частицу
Асо стороны частицы
В, всегда равна по величине и противоположна по направлению силе, действующей на
Всо стороны
А)Если речь идет о гравитационной силе, то между
Аи
Ввозникает сила притяжения, величина которой пропорциональна произведению масс частиц
Аи
Ви обратно пропорциональна квадрату расстояния между частицами:
закон обратных квадратов. Для других типов сил зависимость от взаимного расположения частиц может быть другой, и величина силы в этом случае будет зависеть не от масс частиц, а от какого-то иного их свойства.Великий Иоганн Кеплер (1571–1630), современник Галилея, заметил, что орбиты планет, описываемые ими вокруг Солнца, имеют форму
эллипсов, а не окружностей (причем Солнце всегда находится в фокусе, а не в центре эллипса), и сформулировал два других закона, задающих скорости, с которыми планеты движутся по орбитам. Ньютон сумел показать, что три закона Кеплера следуют из его собственной общей модели (с учетом силы притяжения, обратно пропорциональной квадрату расстояния между телами). Кроме того, Ньютон внес многие поправки к кеплеровским эллиптическим орбитам, а также объяснил ряд других эффектов (например, медленное движение оси вращения Земли, замеченное задолго до Ньютона еще древними греками). Чтобы прийти к таким результатам, Ньютону, помимо дифференциального исчисления, пришлось разработать немало дополнительных математических методов. Феноменальный успех, увенчавший эти усилия, во многом объясняется его высочайшим искусством математика и великолепной физической интуицией.Механистический мир динамики Ньютона
С введением определенного закона для силы (как обратного квадрата расстояния между телами) ньютоновская модель превращается в точную и определенную систему динамических уравнений. Если положения, скорости и массы различных частиц заданы в некоторый момент времени, то их положения и скорости (равно как и массы, которые считаются
постоянными) автоматически определены для всех последующих моментов времени. Эта форма
детерминизма, которой удовлетворяет мир механики Ньютона, оказала (и все еще продолжает оказывать) глубокое влияние на философскую мысль. Попробуем изучить природу ньютонианского детерминизма чуть более подробно. Что он может сказать нам о «свободе воли»? Мог бы в строго ньютонианском мире существовать разум? Найдется ли в нем место хотя бы компьютерам?Давайте попытаемся представить более конкретно «ньютонианскую» модель мира. Например, мы можем предположить, что частицы материи допустимо считать математическими точками, т. е. объектами, не имеющими никакой пространственной протяженности. В качестве альтернативы все частицы можно считать твердыми сферическими шариками. И в том, и в другом случае нам придется предположить, что законы действия сил, как в случае ньютоновского закона всемирного тяготения, известны. Мы хотим промоделировать и другие встречающиеся в природе силы, такие как
электрическиеи
магнитныевзаимодействия (впервые подробно исследованные в 1600 году Уильямом Гильбертом), или сильные
ядерныевзаимодействия, которые, как ныне известно, связывают частицы (протоны и нейтроны), образующие атомные ядра. Электрическое взаимодействие похоже на гравитационное, поскольку тоже удовлетворяет закону обратных квадратов, но при этом одинаково заряженные частицы
отталкивают(а не притягивают, как в случае гравитационного взаимодействия) друг друга, и величину электрического взаимодействия определяют не массы, а
электрические зарядычастиц. Магнитное взаимодействие, так же как и электрическое, «обратно пропорционально квадрату расстояния»
[108], но ядерное взаимодействие имеет совершенно другую зависимость от расстояния: оно очень велико на очень малых расстояниях, сравнимых с внутриатомными, и пренебрежимо мало на больших расстояниях.