Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

А как теперь наглядно представить себе уравнения Гамильтона для фазового пространства? Прежде всего следует помнить о том, что на самом деле изображает одна точка Qфазового пространства. Она соответствует некоторому конкретному набору значений всех координат положений х 1, х 2…. и всех координат импульсов р1p 2, …. То есть, точка Qпредставляет всю нашу физическую системув определенном состоянии движения, заданного для каждой из образующих ее частиц в отдельности. Уравнения Гамильтона говорят нам о степени быстроты изменения всех этих координат, если их текущие значения известны, т. е. управляют движениями всех отдельных частиц. В переводе на язык фазового пространства уравнения Гамильтона описывают дальнейшее поведение точки Qв этом пространстве, если нам задано ее текущее положение. Таким образом, в каждой точке фазового пространства мы имеем маленькую стрелку (точнее: вектор), которая говорит нам о том, как движется точка Q— а это позволяет описывать эволюцию во времени всей нашей системы. Совокупность всех стрелок образует так называемое векторное поле(рис. 5.11). Следовательно, уравнения Гамильтона определяют векторное поле в фазовом пространстве.

Рис. 5.11.Векторное поле в фазовом пространстве, представляющее эволюцию системы во времени в соответствии с уравнениями Гамильтона

Выясним, как можно интерпретировать в терминах фазового пространства физический детерминизм. В качестве начальных условий при t= 0мы имели бы конкретный набор значений, заданных для всех координат положений и импульсов, т. е. некоторую определенную точку Qфазового пространства. Чтобы вычислить эволюцию системы во времени, надо просто следовать стрелкам. Таким образом, все поведение нашей системы (независимо от степени ее сложности) описывается в фазовом пространстве всего лишь одной точкой, движущейся по стрелкам, которые она встречает на своем пути. Мы можем считать, что стрелки указывают «скорость» нашей точки Qв фазовом пространстве. Если стрелка «длинная», то точка Qдвижется быстро, а если «короткая» — то медленно. Чтобы узнать, что наша система делает в момент времени t, мы просто смотрим, куда к этому времени переместилась точка Q, следуя указаниям попутных стрелок. Ясно, что это — детерминистская процедура. Характер движения точки Qполностью определяется гамильтоновым векторным полем.

А как обстоит дело с вычислимостью? Если мы стартовали из вычислимой точки фазового пространства (т. е. из точки, у которой все координаты положения и импульсов являются вычислимыми числами, см. главу 3, «Страна Тор'Блед-Нам»), и с момента начала движения прошло вычислимое время t— то закончим ли мы с необходимостью в точке, которая может быть вычислимым образом получена из tи исходных значений координат? Ответ, очевидно, зависит от выбора функции Гамильтона Н. Действительно, в функцию Нмогут входить физические константы— такие, как ньютоновская постоянная тяготения или скорость света, величина которых зависит от выбора единиц; или другие, описывающиеся точными числовыми выражениями — и поэтому, чтобы положительно ответить на поставленный вопрос, необходимо сначала убедиться в том, что все эти постоянные вычислимы. В такомслучае я осмелюсь предположить, что для обычных гамильтонианов (т. е. функций H), встречающихся в физике, ответ может быть утвердительным. Но это — всего лишь догадка, и вопрос — интересный вопрос! — остается пока открытым. Надеюсь, что со временем он будет изучен более основательно.

С другой стороны, мне кажется, — по тем же самым причинам, которых я кратко коснулся в связи с бильярдным миром — что этот вопрос не настолько существенен. Ведь чтобы утверждение о невычислимости точки фазового пространства имело смысл, необходимо было бы задавать ее координаты с бесконечнойточностью, т. е. со всеми десятичными знаками после запятой! (Число, записываемое конечнымколичеством десятичных знаков, всегда вычислимо.) Конечный отрезок десятичного разложения любого числа ничего не говорит нам о возможности вычислить оставшуюся часть. Но точность всех физических измерений ограничена возможностями приборов, поэтому они могут дать нам информацию лишь о конечном числе знаков десятичного разложения. Обесценивает ли это само понятие «вычислимого числа» применительно к физическим измерениям?

Перейти на страницу:

Похожие книги