Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Эффект расплывания начальной области в фазовом пространстве приводит к еще одному замечательному следствию. Только подумайте: ведь он свидетельствует о том, что классическая механика, на самом деле, не в состоянии адекватно описать наш с вами мир!Я несколько преувеличиваю — но не так уж сильно. Классическая механика может достаточно точно описывать поведение жидких тел — главным образом газов, хотя (с приемлемой степенью точности) и собственно жидкостей — в том случае, когда интерес представляют общие «усредненные» свойства систем частиц; но она испытывает затруднения при попытке объяснить структуру твердых тел, которая отличается более высокой организацией. Проблемой здесь становится невозможность описать феномен сохранения твердым телом своей формы несмотря на то, что оно состоит из мириадов точечноподобных частиц, структура относительного расположения которых постоянно нарушается из-за расплывания начальной области в фазовом пространстве. Как мы теперь знаем, для того, чтобы разобраться в строении твердых тел, необходима квантовая теория, поскольку квантовые эффекты могут каким-то образом предотвратить расплывание портрета системы в фазовом пространстве. Это — весьма важный вопрос, к которому мы еще вернемся в дальнейшем (см. главы 8 и 9).

Затронутая нами тема имеет не менее важное значение и для вопроса о построении «вычислительной машины». Эффект расплывания в фазовом пространстве относится к разряду явлений, которые необходимо контролировать. Нельзя позволить слишком сильно расплываться той области фазового пространства, которая соответствует «дискретному» состоянию вычислительного устройства (такой, например, как описанная выше область R0). Напомним, что даже в «бильярдном компьютере» Фредкина— Тоффоли требовались некоторые специально вводимые извне твердые стенки, необходимые для правильной работы компьютера. Объяснить «цельность» объекта, состоящего из множества частиц, можно в действительности только с помощью квантовой механики. Создается впечатление, что даже «классическая» вычислительная машина должна заимствовать некоторые принципы из квантовой физики — иначе она просто не сможет работать эффективно!

Электромагнитная теория Максвелла

В ньютоновской картине мира мы представляем, что крохотные частицы влияют друг на друга с помощью сил, действующих на расстоянии, причем если частицы не совсем точечные, то они способны отскакивать друг от друга в результате прямого физического контакта. Как уже упоминалось раньше (Глава 5. «Механистический мир динамики Ньютона»), электрические и магнитные силы (которые были известны еще с античных времен и впервые подробно изучены Уильямом Гильбертом в 1600 году и Бенджамином Франклином в 1752 году) действуют аналогично гравитационным силам, поскольку также обратно пропорциональны квадрату расстояния — хотя обе представляют собой скорее силы отталкивания, чем притяжения, действуя в соответствии с принципом «подобное отталкивает подобное»; а вместо массы мерой интенсивности их воздействия служит электрический заряд и сила магнитного полюса, соответственно. На этом уровне не существует никаких трудностей, которые препятствовали бы включению электричества и магнетизма в ньютоновскую схему. Поведение света может быть сравнительно легко описано в общем виде с позиций ньютоновской механики (хотя определенные проблемы при этом все же возникают): либо путем рассмотрения света как субстанции, состоящей из отдельных частиц («фотонов», как теперь их принято называть); либо с помощью представления его в виде волнового процесса, распространяющегося в некоторой среде (в последнем случае эту среду — «эфир» — следует считать состоящей из отдельных частиц).

То, что движущиеся электрические заряды могут создавать магнитные силы, вызывает некоторые дополнительные затруднения, но не разрушает целиком всю ньютонианскую схему. Многие математики и физики (в том числе Гаусс) предлагали системы уравнений для описания эффектов, создаваемых движущимися электрическими зарядами. В рамках общей ньютонианской схемы эти уравнения казались вполне удовлетворительными. Первым, кто бросил серьезный вызов «ньютонианской» картине мира, был, по-видимому, великий английский физик-экспериментатор Майкл Фарадей (1791–1867).

Перейти на страницу:

Похожие книги