Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Но эта система уравнений, в свою очередь, тоже не безукоризненна. Она дает превосходные результаты, если поля однородны вплоть до масштабов порядка диаметра самих частиц (за единицу измерения диаметра принимается «классический радиус» электрона — около 10 -15м), а движения частиц не слишком интенсивны. Однако здесь имеется принципиальная трудность, обойти которую при других обстоятельствах становится невозможно. Дело в том, что уравнения Лоренца подразумевают измерения электромагнитного поля в той самой точке, где находится заряженная частица (по существу, такое измерение должно дать нам значение «силы», действующей в этой точке со стороны электромагнитного поля на нашу частицу). Но где следует выбирать эту точку, если частица имеет конечные размеры? Следует ли принять за нужную точку «центр» частицы, или поле («силу») необходимо усреднить по всем точкам поверхности частицы? Если поле неоднородно в масштабе порядка размера частицы, то разный выбор точки может привести к отличающимся результатам. Есть и другая, более серьезная проблема: каково на самом делеэлектромагнитное поле на поверхности частицы (или в ее центре)? Напомним, что мы рассматриваем заряженнуючастицу. Следовательно, электромагнитное поле, обусловленное самойчастицей, необходимо добавить к «фоновому полю», в котором находится частица. Вблизи самой «поверхности» частицы ее собственное поле становится чрезвычайно интенсивным и легко поглощает все остальные поля в окрестности частицы. Кроме того, собственное поле частицы всюду вокруг нее направлено преимущественно наружу (или вовнутрь), вследствие чего результирующее истинноеполе, на которое по предположению реагирует частица, вовсе не однородно, а в каждой точке на «поверхности» частицы направлено в свою сторону, не говоря уже о «внутренности» частицы (рис. 5.15).

Рис. 5.15.Как можно строго применить уравнения движения Лоренца? Сила, действующая на заряженную частицу, не может быть получена измерением поля в точке нахождения частицы, так как здесь доминирует собственное поле частицы

Дополнительно к этому нам следует выяснить, будут ли отличающиеся по величине силы, которые действуют на частицу, стремиться повернуть или деформировать ее; а также понять, какими упругими свойствами обладает частица: и т. д. (особенно трудны вопросы возникающие в связи с теорией относительности, но я не собираюсь сейчас отвлекать на них внимание читателя). Ясно, что теперь проблема становится намного сложнее по сравнению с тем, какой она казалась нам прежде.

Перейти на страницу:

Похожие книги