Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Напомним, что в главе 5 для описания классической системы было введено понятие фазового пространства. Каждая точка фазового пространства используется для представления (классического) состояния физической системы как целого. В квантовой теории соответствующим аналогичным понятием является гильбертово пространство [147]. Одна точка гильбертова пространства представляет квантовоесостояние системы как целого. Нам необходимо бросить хотя бы беглый взгляд на математическую структуру гильбертова пространства. Надеюсь, что читателя не устрашит такая перспектива. В том, что я намереваюсь сказать, нет ничего математически очень сложного, хотя некоторые идеи могут показаться непривычными.

Наиболее фундаментальное свойство гильбертова пространства заключается в том, что оно представляет собой так называемое векторное пространство, а фактически комплексное векторное пространство. Это означает, что, сложивлюбые два элемента гильбертова пространства, мы получим элемент, также принадлежащий этому же пространству. Кроме того, когда мы производим сложение элементов гильбертова пространства, их разрешается умножать на комплекснозначные веса. Мы должны уметь делать такие операции, ибо они входят в состав только что рассмотренной квантовой линейной суперпозиции, а именно операции, ранее давшие нам фотонные состояния t+ b, t b, t+ ibи т. д. По существу, все что мы имеем в виду, используя термин «комплексное векторное пространство», сводится к разрешению образовывать взвешенные суммы указанного типа [148].

Удобно принять систему обозначений (предложенную главным образом Дираком), согласно которой элементы гильбертова пространства называются векторами состоянияи обозначаются угловыми скобками | ) [149] (важное примечание),

и т. д.

Теперь эти символы обозначают квантовые состояния. Операцию сложения двух векторов состояния мы записываем в виде

или с комплексными весами и z

где  | ) означает х | ) и т. д. Соответствующим образом мы можем записать приведенные выше комбинации t+ b, t b, t+ ibв виде

| t) + | b), | t) — | b), | t) + i| b), и т. д.

Мы можем также просто умножить односостояние | ) на комплексное число и получить

| )

(в действительности это — частный случай приведенной выше комбинации состояний с комплексными весами при z= 0).

Напомним, что нам разрешается рассматривать комбинации с комплекснозначными весами и zи в том случае, когда и z— не являются амплитудами вероятности, а лишь им пропорциональны. Соответственно, мы принимаем правило, согласно которому весь вектор состояния можно умножить на отличное от нуля комплексное число, и физическое состояние от этого не изменится. (В результате такого умножения изменились бы значения весов и z, но отношение : zосталось бы неизменным.) Каждый из векторов

представляет одно и то жефизическое состояние, как и любой вектор z| ), где z/= 0. Единственный элемент гильбертова пространства, не допускающий интерпретацию как физическое состояние, есть нулевой вектор 0 ( начало координатгильбертова пространства).

Чтобы получить некоторое геометрическое представление этой картины, рассмотрим сначала более привычное понятие «вещественного» вектора. Такой вектор принято изображать просто как стрелку, проведенную на плоскости или в трехмерном пространстве. Сложение двух таких векторов производится по правилу параллелограмма (рис. 6.19).

Рис. 6.19.Сложение и умножение на скаляры векторов в гильбертовом пространстве можно наглядно представить как соответствующие операции для векторов в обычном пространстве

Перейти на страницу:

Похожие книги