Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

В действительности уравнение Дирака для электрона по праву должно считаться наряду с уравнениями Максвелла и Эйнштейна одним из великих полевых уравнений физики. Чтобы создать у читателя адекватное представление об уравнении Дирака, мне понадобилось бы ввести здесь математические понятия, которые не столько проясняли суть дела, сколько затемнили бы его еще больше. Достаточно сказать, что в уравнении Дирака | ) обладает любопытным «фермионным» свойством | ) -> — | ) при повороте на 360°, о котором мы упоминали выше (см. гл. 6. «Спин и сфера Римана состояний»). Уравнения Дирака и Максвелла являются фундаментальными составляющими квантовой электродинамики, самой успешной из всех квантовых теорий поля. Давайте ознакомимся вкратце с этой теорией.

Квантовая теория поля

Предмет, известный под названием «квантовая теория поля», возник из объединения идей специальной теории относительности и квантовой механики. От стандартной (т. е. нерелятивистской) квантовой механики квантовая теория поля отличается тем, что число частиц (любого рода) в ней не обязательно постоянно. Для каждого рода частицы существует ее античастица(иногда, как в случае фотонов, античастица и частица совпадают). Массивная частица и ее античастица могут аннигилировать с выделением энергии. С другой стороны, пара частица-античастица может рождаться из энергии. Действительно, число частиц не обязательно должно быть даже определенным, ибо допускаются линейные суперпозиции состояний с различным числом частиц. «Верховной» квантовой теорией поля по праву считается «квантовая электродинамика» — по сути, теория электронов и протонов. Квантовая теория поля замечательна точностью своих предсказаний (например, она предсказала точное значение магнитного момента электрона, упоминавшееся в предыдущей главе). Однако она является весьма неупорядоченной (и не вполне непротиворечивой), так как изначально дает не имеющие физического смысла «бесконечные» ответы. Такие бесконечные значения, или расходимости, подлежат устранению с помощью так называемой процедуры «перенормировки». Не все квантовые теории поля поддаются перенормировке, и даже те, которые допускают перенормировку, наталкиваются на значительные вычислительные трудности.

Весьма популярен подход к квантовой теории поля через использование «интегралов по траекториям», включающих в себя образование квантовых линейных суперпозиций не только состояний различных частиц (как с помощью обычных волновых функций), но учитывающих все пространственно-временные истории физического поведения (доступный обзор см. в книге Фейнмана [1985]). Однако этот подход сам по себе приводит к дополнительным расходимостям, и придать смысл методу «интегралов по траекториям» можно только с помощью различных «математических трюков». Несмотря на несомненную силу и впечатляющую точность квантовой теории поля (в тех немногих случаях, когда теория может быть полностью применена), у физиков остается впечатление, что необходимо более глубокое понимание, прежде чем можно будет с уверенностью принять «картину физической реальности», к которой может привести квантовая теория поля [167].

Я хотел бы подчеркнуть, что согласие между квантовой теорией и специальной теорией относительности, достигающееся в квантовой теории поля, является лишь частичным— касается только U- части— и носит весьма формальный математический характер. Трудности непротиворечивой релятивистской интерпретации «квантовых скачков», связанных с R- частью, к которым приводят эксперименты типа ЭПР, даже не затрагиваются квантовой теорией поля. Кроме того, пока еще не существует непротиворечивой квантовой теории гравитационного поля, которой можно было бы верить. В главе 8 я выскажу некоторые догадки относительно того, что эти проблемы не могут быть никак не связанными между собой.

Кошка Шредингера

Перейти на страницу:

Похожие книги