Чтобы придать блок-схеме алгоритма Евклида завершенный вид, мы должны подставить схему отыскания остатка в соответствующий блок справа в центре предыдущей схемы. Такая подстановка одного алгоритма в другой — распространенная в компьютерном программировании процедура. Алгоритм вычисления остатка, изображенный на рис. 2.2, служит примером
Безусловно, обозначение числа
Алгоритм Евклида — это лишь одна из многих, часто классических, алгоритмических процедур, встречающихся в математике повсеместно. Но, вероятно, не лишним будет отметить, что, несмотря на значительный исторический возраст отдельных алгоритмов, точная формулировка универсального определения алгоритма появилась только в двадцатом веке. В 1930-х годах было предложено несколько альтернативных формулировок этого понятия, из которых наиболее емкая и убедительная — и, к тому же, наиболее значимая в историческом плане — опирается на понятие машины Тьюринга. Поэтому нам будет полезно рассмотреть некоторые свойства этих «машин».
Прежде всего следует помнить, что «машина» Тьюринга принадлежит области «абстрактной математики» и ни в коем случае не является физическим объектом. Это понятие было введено в 1935–1936 годах английским математиком и кибернетиком Аланом Тьюрингом, внесшим огромный новаторский вклад в развитие компьютерной науки (Тьюринг [1937]). Тьюринг рассматривал задачу весьма общего характера (известную как проблема алгоритмической разрешимости), которая была поставлена великим немецким математиком Давидом Гильбертом частично в 1900 году на Парижском Конгрессе математиков (так называемая «десятая проблема Гильберта»), и более полно — на международном конгрессе 1928 года в Болонье. Проблема, поставленная Гильбертом, состояла ни больше, ни меньше как в отыскании универсальной алгоритмической процедуры для решения математических задач или, вернее, ответа на вопрос о принципиальной возможности такой процедуры. Кроме того, Гильберт сформулировал программу, целью которой было построение математики на несокрушимом фундаменте из аксиом и правил вывода, установленных раз и навсегда. Но к тому моменту, когда Тьюринг написал свою великую работу, сама идея этой программы уже была опровергнута поразительной теоремой, доказанной в 1931 году блестящим австрийским логиком Куртом Геделем. Мы рассмотрим теорему Геделя и ее значение в четвертой главе. Проблема Гильберта, которую исследовал Тьюринг
Трудность с ответом на этот вопрос была связана отчасти с определением смысла «механической процедуры» — это понятие выходило за рамки стандартных математических идей того времени. Чтобы как-то ее преодолеть, Тьюринг постарался представить, как можно было бы формализовать понятие «машина» путем расчленения ее действий на элементарные операции. Вполне вероятно, что в качестве примера «машины», помимо прочего, Тьюринг рассматривал и человеческий мозг, тем самым относя к «механическим процедурам» все действия, которые математики выполняют, размышляя над решением математических задач.
Хотя такой взгляд на процесс мышления оказался весьма полезным при разработке Тьюрингом его в высшей степени важной теории, нам совершенно необязательно его придерживаться. Действительно, дав точное определение механической процедуры, Тьюринг тем самым показал, что существуют совершенно четко определенные математические операции, которые никак не могут называться механическими в общепринятом смысле слова. Можно, наверное, усмотреть некую иронию в том, что эта сторона работы Тьюринга позволяет нам теперь косвенным образом выявить его собственную точку зрения на природу мышления. Однако, нас это пока занимать не будет. Прежде всего нам необходимо выяснить, в чем же, собственно, заключается теория Тьюринга.
Концепция Тьюринга