Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

(б) вычитать единицу.

Под «основанием» здесь понимается просто число «2», фигурирующее в исходном выражении, но мы можем сделать то же самое и с большими основаниями: 3, 4, 5, 6…..

Давайте посмотрим, что произойдет при применении операции (а)к последнему разложению числа 581, в результате которой двойки становятся тройками:

(что дает — если выписать его в обычной форме — сороказначное число, начинающееся с 133027946…). После этого мы применяем (б)и получаем

(т. е. по-прежнему сорокозначное число, начинающееся с 133027946…). Далее мы выполняем (а)еще раз и получаем

(это уже значительно большее число, состоящее из 618 знаков, которое начинается с 12926802…). Следующая операция — вычитание единицы — приводит к выражению

(где тройки получаются по той же причине, что и девятки в обычной десятичной записи, когда мы получаем 9999, вычитая 1 из 10 000). После чего операция (а)дает нам

(число, которое имеет 10923 знака и начинается с 1274…). Обратите внимание, что коэффициенты «3», которые возникают при этом, с необходимостью меньше, чем основание (в данном случае 5), и не изменяются с возрастанием последнего. Применяя (б)вновь, имеем число

над которым мы опять производим последовательно действия (а), (б), (а), (б),… и т. д., насколько возможно. Вполне естественно предположить, что этот процесс никогда не завершится, потому что каждый раз мы будем получать все большие и большие числа. Однако это не так: как следует из поразительной теоремы Гудстейна, независимо от величины исходного числа ( 581в нашем примере), мы в конце концов получим нуль!

Кажется невероятным, но это так. А чтобы в это поверить, я рекомендовал бы читателю самостоятельно проделать вышеописанную процедуру, для начала — с числом «3» (где мы раскладываем тройку как 2 1+1, что дает последовательность 4, 3,4, 2, 1, 0); а затем — что более важно — попробовать то же самое с «4» (при этом стартовое разложение в виде 4 = 2 2приводит к вполне закономерно возрастающему ряду 4, 27, 26, 42, 41, 61, 60, 84…, который доходит до числа из 121210 695-ти знаков, после чего уменьшается вплоть до нуля!).

Но что кажется еще более удивительным: теорема Гудстейна фактически является теоремой Геделядля той самой процедуры, которую мы изучали в школе под названием математической индукции, как было доказано в свое время JI.Кирби и Дж. Парисом [16]. Как вы, должно быть, помните, математическая индукция позволяет установить справедливость некоторого математического утверждения S( n) для n= 1, 2, 3, 4, 5… Доказательство проводится в два этапа: сначала нужно проверить справедливость S( l), а затем показать, что, если верно S( n), то должно выполняться и S( n+ 1). Приняв процедуру математической индукции за Р, Кирби и Парис доказали, что тогда G( P) может иметь смысл теоремы Гудстейна.

Следовательно, если мы считаем процедуру математической индукции достоверной (с чем едва ли можно не согласиться), то мы должны верить и в справедливость теоремы Гудстейна — несмотря на то, что при помощи одной лишь математической индукции доказать ее невозможно.

«Недоказуемость» теоремы Гудстейна, понимаемая в этом смысле, вряд ли может помешать нам убедиться в ее фактической справедливости. Наши интуитивные представления позволяют нам расширитьдействие тех ограниченных приемов «доказательства», которыми мы воспользовались ранее. В действительности сам Гудстейн доказал свою теорему, прибегнув к разновидности метода, который называется «трансфинитной индукцией». В контексте нашего изложения этот метод сводится к систематизации интуитивных ощущений, которые возникают в процессе знакомства с «причиной», по которой теорема Гудстейна и в самом деле верна. Эти ощущения могут родиться практически целиком за счет изучения некоторого числа частных случаев указанной теоремы. И тогда станет видно, как скромная незаметная операция (б)безжалостно «отщипывает» по кусочку от огромной башни «показателей» до тех пор, пока она не начинает постепенно таять и полностью исчезает, — хотя бы на это ушло и невообразимо большое число шагов.

Все это говорит о том, что способность пониматьникоим образом не может сводиться к некоторому набору правил. Более того, понимание является свойством, которое зависит от нашего сознания; и что бы не отвечало в нас за сознательное восприятие — это должно самым непосредственным образом участвовать в процессе «понимания». Тем самым, в формировании нашего сознания с необходимостью есть элементы, которые не могут быть получены из какого бы то ни было набора вычислительных инструкций; что, естественно, дает нам веские основания считать, что сознательное восприятие — процесс существенно «невычислимый».

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука