Как бы там ни было, мне кажется, что из доказательства Геделя следует с очевидностью, что понятие математической истины не может быть заключено ни в. одну из формальных систем. Математическая истина выходит за рамки любого формализма. Возможно, это ясно даже без теоремы Геделя. Иначе как бы мы решали, какие аксиомы и правила вывода брать в расчет при построении формальной системы? Нашим руководством в принятии такого решения должно всегда служить интуитивное понимание о том, что является «самоочевидно верным» с учетом «смысловых значений» символов системы. Как нам решить, какие формальные системы стоит использовать (в соответствии с нашим интуитивным ощущением «самоочевидности» и «смысла»), а какие — нет? Понятие «внутренней непротиворечивости» явно не подходит для этой цели. Можно иметь много внутренне непротиворечивых систем, которые «бессмысленны» с точки зрения их практического использования, в которых аксиомы и правила вывода имеют ложные в нашем понимании значения или же не имеют никаких. «Самоочевидность» и «смысл» — это понятия, которые потребовались бы даже без теоремы Геделя.
Однако, без этой теоремы могло бы сложиться впечатление, что интуитивные понятия «самоочевидность» и «смысл» могли бы быть использованы только в самом начале раз и навсегда, просто чтобы изначально задать формальную систему, а затем мы могли бы отказаться от них при построении строгого математического доказательства для определения истины. Тогда, в соответствии с формалистскими воззрениями, эти «расплывчатые» интуитивные понятия задействовались бы только в «предварительных» размышлениях математиков, направленных на отыскание подходящего формального доказательства; а потом, когда дело дойдет до определения математической истины, они уже не играли бы никакой роли. Теорема Геделя демонстрирует, что такой подход в действительности не является логически состоятельным в рамках фундаментальной философии математики. Понятие математической истины выходит за пределы всей теории формализма. В этом понятии есть нечто абсолютное и «данное свыше». И это как раз то, о чем трактует математический платонизм, обсуждаемый в конце предыдущей главы. Всякая формальная система имеет свойство сиюминутности и «человеко-зависимости». Такие системы, безусловно, играют очень важную роль в математических рассуждениях, но они могут указывать только частично верное (или приблизительное) направление к истине. Настоящая математическая истина выходит за пределы сотворенного человеком.
Платонизм или интуиционизм?
Я указал две противостоящие друг другу школы математической философии, решительно причисляя себя более к платонистскому, нежели к формалистскому воззрению. В действительности же я применил довольно упрощенный подход при их разделении. Существует множество тонкостей, которые можно было бы принять в расчет. Например, в рамках платонизма можно поставить вопрос о том, существуют ли в реальности объекты математической мысли или это только лишь понятие «математической истины», которое является абсолютным. Я решил не обсуждать здесь подобные различия. В моем представлении абсолютность математической истины и платонистское существование математических понятий, по существу, тождественны. «Существование», которое должно быть приписано множеству Мандельброта, к примеру, есть свойство его абсолютной природы. Принадлежит ли точка плоскости Аргана множеству Мандельброта или нет — вопрос абсолютный, не зависящий от математика или компьютера, которые его исследуют. Эта «независимость-от-математика» множества Мандельброта и обеспечивает ему платонистское существование. Более того, наиболее тонкие детали этого множества лежат за пределами того, что можно достигнуть с помощью компьютера. Эти устройства способны только аппроксимировать структуры, имеющие свое, более глубокое и «не зависящее-от-компьютера», существование. Я, однако, готов согласиться с тем, что имеются и прочие разумные точки зрения, с которых можно исследовать этот вопрос. Но здесь нам нет необходимости придавать значение этим различиям.