Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Попробуем разобраться с вопросом о том, насколько ограничивающим для Большого взрыва было условие типа ВЕЙЛЬ= 0. Для простоты (как и ранее) мы будем считать вселенную замкнутой. Для того чтобы составить ясную и конкретную картину, далее мы везде будем полагать, что число барионов В— т. е. общее число протонов и нейтронов, во вселенной составляет примерно

В= 1080.

(Не существует каких-то особых оснований для выбора именно этого значения, кроме тех эмпирических данных, которые приводят к нему как к нижней оценке В. Эддингтон однажды заявил, что вычислил В точно и полученное им значение оказалось близким к приведенному выше! Кажется, что сейчас уже никто не принимает всерьез эти вычисления, но значение 1080 надежно утвердилось.) Если бы мы взяли большее значение В(в действительности может оказаться, что ВЕЙЛЬ→ ∞), то величины, полученные нами в этом случае, оказалась бы еще поразительнее тех (и без того весьма экстраординарных чисел), к которым мы через несколько шагов придем!

Попробуем представить себе фазовое пространство (Глава 5. «Фазовое пространство») всей вселенной! Каждая точка этого пространства потенциально соответствует определенному начальному состоянию, из которого вселенная могла начинать свою эволюцию. На рис. 7.19 мы условно изображаем Творца, который в своей деснице держит «булавку», чтобы отметить ею некую точку нашего фазового пространства.

Рис. 7.19. Для сотворения вселенной, близкой по своим свойствам к той, в которой мы живем, Творец ограничивает свой выбор исчезающе малым объемом в фазовом пространстве возможных вселенных, в рассматриваемом случае — всего около объема всего пространства. (Этот объем и нацеленная на него булавка показаны без соблюдения масштабов!)

Каждое положение булавки соответствует творению особой вселенной. Точность, с которой Творец создает какую-либо вселенную, напрямую связана с энтропией этой вселенной. Создать вселенную с высокой энтропией было бы относительно «легко», поскольку в этом случае в распоряжении Творца имеется большой объем фазового пространства, в который надо указать булавкой. (Напомним, что энтропия пропорциональна логарифму объема соответствующего фазового пространства.) Но чтобы создать вселенную в состоянии с низкой энтропией — так, чтобы в ней выполнялось второе начало термодинамики, — Творец должен направить булавку в гораздо меньший объем фазового пространства. Насколько малым должен быть этот объем, чтобы в результате творения получилась вселенная, напоминающая по своим свойствам ту, в которой мы живем? Для ответа на этот вопрос, мы должны обратиться к замечательной формуле, выведенной Якобом Бекенштейном [1972] и Стивеном Хокингом [1975], которая говорит о том, чему должна быть равна энтропия черной дыры.

Рассмотрим черную дыру и допустим, что площадь ее горизонта есть А. Формула Хокинга-Бекенштейна для энтропии черной дыры гласит:

где k— константа Больцмана, с— скорость света, G— ньютоновская гравитационная постоянная и ħ— постоянная Планка, деленная на . Самая существенная часть этой формулы заключена во множителе А/ 4. Часть, стоящая в скобках, содержит только необходимые для соблюдения размерности физические константы. Таким образом, энтропия черной дыры оказывается пропорциональной площади ее поверхности. Для сферически симметричной черной дыры эта площадь оказывается пропорциональной квадрату массы этой дыры:

Объединяя это с формулой Бекенштейна — Хокинга, мы получаем, что энтропия черной дыры пропорциональна квадрату ее массы:

Таким образом, энтропия, приходящаяся на единицу массы( S ч.д./ m) черной дыры, пропорциональна ее массе и оказывается тем больше, чем больше черная дыра. Следовательно, для заданной массы или, эквивалентно, — согласно формуле Эйнштейна Еmc 2, — для заданной энергии, наибольшая энтропия достигается тогда, когда вся материя сколлапсирует в черную дыру! Более того, энтропия системы двух черных дыр существенно возрастает, когда эти дыры сливаются в одну! Гигантские черные дыры, типа тех, которые, как полагают, находятся в центрах галактик, заключают в себе колоссальное количество энтропии — намного превосходящее те ее значения, которые встречаются в других физических ситуациях.

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки