Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Совершенно точная абстрактная математическая теория действительных чисел была построена только в XIX веке такими математиками, как Дедекинд и Вейерштрасс. Но в действительности, предложенная ими процедура опиралась на те же идеи, которые были открыты Евдоксом примерно двадцатью двумя столетиями раньше! Сейчас нам не обязательно заниматься подробным изучением этой современной теории. Я кратко коснулся ее основных моментов в главе 3 (подглава «Действительные числа»), где для большей наглядности изложения предпочел использовать более привычное десятичное разложение действительных чисел. (В действительности, десятичное разложение была введено Стевином в 1585 году.) Следует также заметить, что хорошо знакомая нам десятичная запись была неизвестна древним грекам.

Однако, между теориями, предложенными Евдоксом с одной стороны, и Дедекиндом и Вейерштрассом — с другой, существует важное различие. Древние греки рассматривали действительные числа как изначально данные— в терминах (отношений) геометрических величин — т. е. как свойства «реального» пространства. Древним грекам было необходимо иметь возможность описывать геометрические величины арифметически, чтобы затем в рамках законов и правил арифметики проводить строгие рассуждения над этими геометрическими величинам, а также их суммами и произведениями — существенными составляющими столь многих замечательных геометрических теорем древних. (На рис. 5.3 в качестве иллюстрации приведена знаменитая теорема Птолемея, хотя Птолемей открыл ее гораздо позже эпохи, в которую жил Евдокс. Теорема Птолемея устанавливает соотношение, которому удовлетворяют расстояния между четырьмя точками на окружности; в ее формулировке с необходимостью используются как понятие суммы, так и понятие произведения.) Критерии Евдокса оказались необычайно плодотворными и, в частности, позволили древним грекам строго вычислять площади и объема.

Рис. 5.3. Теорема Птолемея

Но для математиков XIX века — и, разумеется, для современных математиков роль геометрии изменилась. Для древних греков и, в частности, для Евдокса, «действительные» числа были объектами, извлеченными из геометрии физического пространства. Ныне мы предпочитаем считать, что действительные числа логически более первичны, чем геометрия. Это позволяет нам конструировать всевозможные различные типы геометрии, каждый из которых исходит из понятия числа. (Ключевой идеей была идея координатной геометрии, введенная в XVII веке Ферма и Декартом. Координаты можно использовать для определения других типов геометрии.) Любая такая «геометрия» должна быть логически непротиворечивой, но не обязательно должна иметь прямое отношение к физическому пространству нашего эмпирического опыта. Конкретную физическую геометрию мы, по-видимому, постигаем через идеализацию эмпирического опыта (т. е. в зависимости от наших экстраполяций на бесконечно большие или бесконечно малые размеры, — см. главу 3, подглава «„Действительность“ действительных чисел»). Проводимые ныне эксперименты достаточно точны и приводят нас с необходимостью к заключению, что наша «извлеченная из эмпирического опыта» геометрия в действительности отличается от евклидова идеала (см. гл.5, конец подглавы «Общая теория относительности Эйнштейна») и согласуется с геометрией, требуемой в общей теорией относительности Эйнштейна. Однако, несмотря на изменения в наших взглядах на геометрию физического мира, возникших в настоящее время, понятие действительного числа, выдвинутое Евдоксом двадцать три столетия назад, по существу осталось неизменным и является существенным ингредиентом как теории Эйнштейна, так и теории Евклида. В действительности это понятие служит существенным ингредиентом всех современных серьезных физических теорий!

Пятая книга Начал Евклида бьша, по существу, изложением описанной выше «теории пропорций», введенной Евдоксом. Эта книга имела принципиально важное значение для всего многотомного сочинения Евклида в целом. На самом деле, Начала Евклида, впервые увидевшие свет около 300 года до н. э., должны считаться одним из сочинений, оказавших наибольшее влияние в истории человечества. Именно Начала Евклида установили эталон для почти всего последующего естественнонаучного и математического мышления. Методы Начал были дедуктивными, изложение начиналось с четко сформулированных аксиом, которые предполагались «самоочевидными» свойствами пространства; из аксиом выводились многочисленные следствия, многие из которых были важными и поразительными, и совсем не самоочевидными. Не подлежит сомнению, что Начала Евклида имели огромное значение для последующего развития естественнонаучного мышления.

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки