Ну, я, конечно, сказал, что прямая линия - это такая линия, которая прямая. Капитан возмутился: не определение, мол, а кит знает что! А штурман прямо зарычал от негодования:
- Разрази меня гром, бом-брам-фок! Прямая линия - это же кратчайшее расстояние между двумя точками!
- Верно, да не совсем,- возразил капитан.- Кратчайшее расстояние между двумя точками - всего лишь отрезок прямой. А прямая тянется в обе стороны бесконечно.
Я взял карандаш и прямо на палубе нарисовал длиннющий отрезок прямой. Но капитан сказал, что моя прямая - вовсе не прямая, а...
Это я и сам видел. Кривой она получилась потому, что палубу качает. А вообще-то я умею рисовать прямые линии. Такие прямые, как верёвки, что натягивают паруса: проведи по ним смычком, и они запоют!
- Бом-брам-фок!- снова загремел штурман.-Во-первых, не верёвки, а ванты. А во-вторых, они слишком толсты, чтобы называться прямыми линиями.
- Видишь ли,- пояснил капитан,- прямые в геометрии - дело особое. Хочешь видеть настоящие геометрические прямые - взгляни на здешние телеграфные провода.
Я взглянул на берег и... никаких проводов не увидел. Тогда капитан велел мне посмотреть в телескоп, и - вот так штука! - между столбами в самом деле были натянуты провода, тоненькие-претоненькие. Капитан сказал, что они вовсе не имеют толщины, только длину, и так тонки, что без волшебного телескопа их не увидишь, разве что вообразишь.
Но вот вопрос: как эти воображаемые провода держатся на столбах? Оказалось, так же, как и любые другие провода - на изоляторах. А изоляторами здесь служат геометрические точки. И вот почему их тоже не видно. Ведь у геометрических или математических точек (что одно и то же) нет ни длины, ни ширины, ни толщины! Они тоже воображаемые.
Штурман покрутил ещё какие-то винтики, и я наконец увидел крохотные точки-изоляторы.
- Здорово вы мне всё это доказали... - начал я, но тут же осекся, потому что случилось что-то непонятное.
Сверкнула молния, загремел гром. Фрегат качнуло так, что я чуть не полетел за борт, а море закипело, и из него вылез бородатый старик в золотой, обросшей водорослями короне. Старик размахивал огромной трезубой вилкой и чуть не угодил мне в глаз.
- Кто нарушает законы бухты А? - грозно завопил он.- Кто тут собирается что-то дока... и так далее?!
Капитан и штурман бухнулись на колени и, перебивая друг друга, заголосили:
- Ваше нептунское величество! Повелитель морей и океанов! Простите его! Он не нарочно!
Здравствуйте! Оказывается, я же ещё и виноват!
- О горе мне и всему подводному царству! - застонал старик.- Неужели этот юнга не знает, что А-сокращённое название бухты Аксиома, где что-либо доказывать строго воспрещается?!
- Ваше величество, могучий царь Нептун! - взывал капитан. - Стоит ли волноваться из-за новичка, который понятия не имеет об аксиоме? Поберегите свои нервы!
Услыхав про нервы, Нептун вдруг притих, задумчиво почесал трезубцем в затылке, потом нерешительно хмыкнул и вдруг... нырнул в воду.
Сообразив, что опасность миновала, я потребовал объяснений, но получил их только через несколько часов, когда злосчастная бухта осталась далеко позади.
Капитан подозвал меня и спросил:
- Станешь ли ты дружить с тем, кто может ни с того ни с сего обидеть собаку? Или мучить кошку?
- Само собой, не стану,- сказал я.
- А придёшь ли на помощь другу, если он попал в беду?
- Что за вопрос? Конечно, приду. Ясно, как шоколад, и не требует доказательств.
- Прекрасно! - обрадовался капитан.- Именно так мы и объясняем значение слова "аксиома". Аксиома - это то, что само собой разумеется и доказательств не требует. Впрочем, учёные говорят немного иначе. По их мнению, аксиомой называется то, что принимается без доказательств.
- Что в лоб, что по лбу! Одно и то же!
- Ошибаешься, - возразил капитан. - По мнению математиков, аксиома не то что бы НЕ ТРЕБУЕТ доказательств - её НЕВОЗМОЖНО доказать. Поэтому и приходится ПРИНИМАТЬ её на веру.
Я спросил: как учёные придумывают эти аксиомы? Оказалось, они их вовсе не придумывают, а принимают после долгих наблюдений и опытов.
- Всякая наука начинается с аксиом, - заключил капитан.
Так вот почему мы начали рейс из бухты А: всё всегда начинается с начала!
Я спросил капитана, какую он знает самую простую математическую аксиому? Он ответил, что все аксиомы простые, и, в свою очередь, пожелал узнать, сколько, по-моему, прямых линий можно провести через две точки. Я догадался, что, наверное, не больше одной.
- Правильно! То, что ты сказал, и есть математическая аксиома,- похвалил меня капитан. (Люблю, когда меня хвалят!)
- Теперь уж вовек не забуду, что между двумя точками можно провести только одну прямую! - хвастливо сказал я.
Но тут снова откуда-то появился штурман Игрек и заявил, что я сказал чепуху. Потому что между двумя точками можно провести не одну, а сколько угодно прямых.
Он взял лист бумаги, поставил по краям две точки и провёл между ними штук пятнадцать прямых! Из чего следует, что говорить надо не "МЕЖДУ двумя точками", а "ЧЕРЕЗ две точки".
Вот как важно подобрать точное слово, если хочешь, чтобы тебя правильно поняли!