Читаем Нулик - мореход полностью

По словам главного архитектора, лежащие здесь полоски - это не стёкла, а кусочки геометрической или, попросту, математической плоскости. А то, что у математической плоскости толщины не бывает, я теперь и во сне помню. Другое дело, как её изготовляют, эту математическую плоскость?

Я спросил об этом у архитектора, но вместо ответа он предложил нам вообразить геометрическую точку, которая движется в одном направлении и выпускает из себя капельку краски т- тоже, конечно, воображаемую. Ясно, что капелька как бы нарисует весь путь точки, то есть прямую линию. И у этой прямой есть уже одно измерение: длина.

- Теперь, - сказал архитектор, - представим себе, что получится, если эта начерченная краской прямая покатится, как карандаш, по гладко отполированному столу?

- Получится окрашенная плоскость, - сказал Пи.

- Верно, - согласился архитектор. - А у плоскости есть уже два измерения: длина и ширина. Теперь остаются сущие пустяки: застеклить полосками этой плоскости полукруглый проём стадиона.

По правде говоря, нам с Пи хотелось отделаться от работы поскорее, и вот почему мы отобрали полоски пошире. Но ничего хорошего из этого не вышло. Ведь полоски прямоугольные, а проём - полукруглый. И осталось при этом много незастеклённых прорех. Мы хотели было залатать их кусочками плоскости, отломанными от других полосок, но главный архитектор издали погрозил нам пальцем и указал на огромный плакат:



Ничего не поделаешь, пришлось начинать всё сначала. На сей раз отобрали полоски поуже. И всё-таки дырок осталось - будь здоров! Разве что поменьше размером.

Тогда мы придумали вот что: набрать самых что ни на есть коротких полосок, застеклить ими прорехи - и дело с концом!

Действительно, не прошло и часа, как с дырками было покончено. Но главный архитектор, поглядев на нашу работу, только за голову схватился: ведь теперь наши прямоугольные плоскости торчали зубцами над крышей!

Пришлось застеклять проём в третий раз. Наученные горьким опытом, мы набрали полосок таких узких, что и не ухватишь. Получилось вроде бы неплохо, но главный сказал, что щели, хоть и незаметные, всё равно остались, и все спортсмены наверняка простудятся.

К тому времени мы с Пи совсем уже выдохлись и чуть не плакали от досады и усталости. И тут...

И тут появился наш дорогой, наш несравненный капитан Единица. И всё сразу пошло как по маслу. Оказывается, мы всё время отбирали полоски, годные только для прямоугольных проёмов, в то время как для полукруглых нужны особые, волшебные. Бесконечно малые по ширине.

Бесконечно малые? Стойте! Что-то такое мы об этом уже слышали...

- Ну конечно, - подтвердил Пи. - Вспомни задачу Зенона про Ахиллеса и черепаху.

- Молодцы, ребята! - обрадовался капитан. - Зенон был первым, кто представил себе бесконечно малую величину -иначе говоря, такую математическую величину, которая всё время стремится к нулю, но никогда его не достигает. Именно таковы и наши волшебные полоски. Ширина их всё время сама по себе убывает и непрерывно стремится к нулю. Но самое интересное, что при этом изменяется и высота полоски. Выступающие уголки её постепенно скругляются, сглаживаются.



- Выходит, высота этого выступающего кусочка плоскости есть функция ширины полоски, - сообразил я.

И тут случилось нечто небывалое. Капитан, всегда такой! спокойный и рассудительный, бросился мне на шею и рас целовал в обе щеки.

- Ай спасибо! - повторял он, улыбаясь во весь рот. - Вот спасибо! Теперь я вижу, что труды мои не пропали даром. Вы таки кое-что усвоили из пройденного...

Когда он наконец чуток успокоился, мы пошли за волшебными полосками, и я спросил, много ли их понадобится? Оказалось, не просто много, а бесконечно много. Вот здорово! Значит, бесконечным множеством бесконечно малых по ширине полосок можно точно застеклить площадь любой формы?!

- Ну конечно! - подтвердил Единица. - А из этого, в свою очередь, нетрудно понять, что площадь есть не что иное, как сумма бесконечного числа волшебных полосок. И называется эта сумма интегралом. С помощью интеграла можно вычислить кучу интереснейших вещей: самые разнообразные площади, объёмы, орбиты, скорости огромных планет и крохотных электронов... В общем, там, где требуется вычислить сумму бесконечно большого числа бесконечно малых слагаемых, без интеграла не обойдёшься.

- Всё это очень хорошо, - сказал Пи, - но почему у этого интеграла на гербе дракон?

- Не дракон, а что-то вроде латинского "эс" - S, - засмеялся капитан. - Недаром S - первая буква слова "сумма". Вот она и стала знаком интеграла.

- Интересно, а кто был первым интегральщиком на свете? - спросил Пи.

- Самым-самым? - Капитан почесал за ухом.- Самым первым можно, пожалуй, считать великого древнегреческого учёного Архимёда. Человечество обязано Архимеду многими открытиями в самых разных областях: в математике, механике, физике, инженерном и военном деле... Научное наследие Архимеда огромно. И немалое место занимает в нём трактат об исчислении песчинок.

- Об исчислении чего? - удивлённо переспросил я.

Перейти на страницу:

Похожие книги