Читаем О чем рассказывает свет полностью

Бор утверждает: атом испускает свет только во время перескоков электронов с орбит более удаленных на орбиты более близкие к ядру. Подсчитав энергии электрона на возможных для него орбитах, физики нашли, что при перескоке 2—1 (так мы будем обозначать перескок электрона с орбиты № 2 на орбиту № 1) атом водорода должен испускать излучение с частотой 24,7·1014 циклов, при перескоке 3—1 — с частотой 29,2·1014 циклов, при перескоке 4—1 — с частотой 30,9·1014 циклов, при перескоке 3—2 — с частотой 4,6·1014 циклов, при перескоке 4—2 — с частотой 6,2·1014 циклов, а при перескоке 4—3 — с частотой 1,6·1014 циклов. Таким образом, оказалось, что частота света, излучаемого парами раскаленного водорода, определяется тем, с какой орбиты на какую перескакивают электроны в его атомах.

Перескоками электродов можно объяснить и тот факт, что разности между отдельными частотами тоже являются частотами излучения атомов. Когда электрон обращается, скажем, по четвертой орбите, атом имеет один запас энергии. При перескоке электрона на вторую орбиту атом теряет часть энергии на излучение. Обозначим ее так: Э4,2. Но ту же энергию атом может потерять за два приема: при перескоках электрона с четвертой орбиты на третью и с третьей на вторую. Если обозначить энергии, потерянные при отдельных перескоках, через Э4,3 и Э3,2, то сказанное можно записать: Э4,2 = Э4,3 + Э3,2. Отсюда следует, что энергия, потерянная при перескоке 4—2, минус энергия, потерянная при перескоке 4—3, равна энергии, потерянной три перескоке 3—2. Но мы уже знаем, что энергия излучения тем больше, чем больше частоты излучения. Следовательно, если существует закон разности энергий излучений, то существует и закон разности частот излучений. Это мы и видим на примере частот, указанных в предыдущем абзаце. В самом деле: 6,2·1014 — 1,6·1014 = 4,6· 1014.

Следует заметить, что при каждом отдельном перескоке электрона атом испускает излучение только одной частоты. Если же в спектре водорода мы наблюдаем излучения не одной, а нескольких частот, то это потому, что мы всегда наблюдаем результат действия не одного, а множества атомов. В одних атомах электроны перескакивают со второй орбиты на первую, в других — с третьей на вторую, с третьей на первую и т. д.

Такое же объяснение можно дать и частотам спектров других элементов.

Такова была модель атома, нарисованная Бором. Она была только первым шагом в изучении строения атома, так как не объясняла, почему электроны ведут себя в атоме так странно, в противоречии с установленными ранее законами. Она только указывала (да и то лишь в простейших случаях), как они себя ведут, в силу каких-то новых, еще не открытых законов, верных для мира малых величин. Эти законы были открыты не сразу. Они нашли освещение в новой науке — квантовой механике.

Модель Бора отображает го, что происходит в простых атомах, лишь в грубом приближении. А для сложных атомов она вовсе непригодна. Но в случаях, когда большая точность не требуется, физики пользуются этой моделью ввиду ее простоты.

В этой модели сохранятся не геометрические образы (орбиты электронов), а главные физические черты, подтвержденные экспериментом; а именно: возбужденные атомы находятся в различных энергетических состояниях, вполне определенных для атомов данного элемента; это энергетическое состояние атом может изменять только скачком, переходя при этом на более низкий энергетический уровень и испуская квант света (фотон) определенной частоты (и, следовательно, определенной энергии), в зависимости от того, какой из возможных переходов он при данных условиях совершает.

Атомные спектры и электронные слои

Физики собрали в спектроскопических лабораториях все известные элементы. Они бомбардировали атомы различных элементов быстрыми электронами, отщепляли от атомов то один, то два, то несколько электронов, действовали на атомы сильными магнитными и электрическими полями, словом, ставили атомы во всевозможные условия. И все время наблюдали, какие при этом получаются спектры, как эти спектры изменяются под влиянием различных условий. А из этого делали выводы о том, какие же перестройки происходят внутри атомов.

Рассмотрим один из примеров, показывающий, как по атомным спектрам физики определяют строение атомов.

Возьмем элемент литий. Он стоит в таблице Менделеева на третьем месте, у его атомов по три электрона. Если атом не возбужден, электроны обращаются вокруг ядра по устойчивым орбитам. Все эти орбиты можно занумеровать одним номером — № 1; но мы должны помнить, что это номера орбит для разных электронов. Не можем ли мы по спектрам атомов лития узнать что-либо еще о его орбитах?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже