Читаем О движении полностью

Размышляя над проблемами механики, Декарт обращался к опыту инженеров, ремесленников и вообще практиков. «Мне казалось, — писал он, — что я мог встретить гораздо больше истины в рассуждениях, которые каждый делает о делах, непосредственно его касающихся, и результат которых, в случае ошибки, немедленно должен его наказать, чем в кабинетных рассуждениях ученого».

Декарт был выдающимся математиком. Он создал новую науку — аналитическую геометрию, объединившую анализ и геометрию. Эта наука способствовала развитию механики, так как позволяла аналитически изучать кривые линии, описываемые движущимися материальными точками.

В своих воззрениях на мир Декарт был материалистом. Он утверждал, что мир — пространство, сплошь заполненное материей (веществом). Эта материя охвачена вихреобразным движением, служащим причиной обращения планет и всех явлений природы. В мире нет ничего, кроме движущейся материи. Поэтому все происходящее в нем подчинено законам механики.

Декарт отвергал твердые планетные сферы древних греческих астрономов. Он объяснял движение планет вокруг Солнца тем, что они увлекаются вихрями межпланетной материи («эфира»), кружащимися около центрального светила нашей планетной системы.

Грандиозность этой картины поразила ученых того времени. Физики, астрономы стали последователями учения Декарта о «вихрях», движущих планеты вокруг Солнца.

Но, обладая большим математическим дарованием, Декарт не приложил его к разработке теории своих вихрей. Он удовольствовался построением общей картины мира, не отыскивая управляющих им законов.

Подобные гипотезы носят в науке название «качественных», в отличие от количественных построений, которые только и могут удовлетворить современного ученого. Вихри Декарта были забыты, но его материалистические взгляды оказали сильное влияние на развитие естествознания.

Как механик Декарт не признавал существования в природе сил. Он утверждал, что не силы двигают материю, а извечно присущее частицам материи движение проявляется как сила. Именно материи, по выражению К. Маркса, Декарт приписывал творческую силу.

Декарт не сделал открытий в механике. Он даже не признал законов динамики, выведенных Галилеем. Но его воззрения на природу силы до настоящего времени привлекают большое внимание физиков.

<p>Галилей — основоположник динамики</p>

Для введения экспериментального метода в механику было недостаточно лишь сознания его необходимости. Требовалось не только уметь ставить опыты, но и выводить из них теоретические правила — законы. Вывод законов мог быть сделан путем математической обработки результатов экспериментов.

В XVI веке в Италии уже работало много математиков — последователей Тартальи. Эти ученые обладали достаточными познаниями для вывода законов механики. Но они не были экспериментаторами и не могли дать новое направление этой науке. Делавшие же опыты художники, техники и ремесленники не обладали систематической научной подготовкой. Поэтому и они также не были в состоянии из результатов своих опытов выводить общие законы.

Только гениальному Галилею, обладавшему талантом экспериментатора и математическими познаниями, удалось заложить основы учения о движении — динамики.

В детстве Галилей увлекался изготовлением действующих моделей машин и игрушек. Уже тогда он проявил большие способности. Видя это, его отец изменил свои намерения в отношении будущности Галилея: вместо торговой конторы он отдал его в Пизанский университет.

Галилей принялся усердно за изучение физики по Аристотелю, астрономии — по Птолемею, геометрии — по Евклиду. По выходе из университета он должен был стать врачом.

Но схоластическое естествознание было основано на безусловном признании мнений авторитетов. Оно исключало самую возможность критики, если даже она исходила из результатов опыта и наблюдений.

Исследовательский дух Галилея не мог примириться с мертвой схоластикой. Незадолго до окончания университета Галилей в возрасте двадцати лет оставил его.

Галилей чувствовал большой интерес к технике, к прикладной математике и к механике. Эти науки не преподавались в университетах. С ними Галилей мог познакомиться только в Художественной академии, бывшей одновременно и высшей технической школой. Он стал посещать лекции в академии и брал частные уроки механики и прикладной математики.

Учителем Галилея был математик школы Тартальи — Остилио Риччи, преподававший прикладную математику молодым людям. Он решал со своим учеником задачи, встречающиеся в практической деятельности инженеров, артиллеристов и других техников.

Стремление связать теорию с практикой было отличительной чертой Галилея как ученого. Поэтому, оставив оторванную от жизни схоластику, Галилей охотно взялся за изучение прикладной математики.

Образование, полученное Галилеем под руководством Риччи, вполне соответствовало духу, господствовавшему в академиях и среди художников-инженеров той эпохи.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука