Читаем О движении полностью

Шарик скатывается по наклонной плоскости под действием силы тяжести. Значит, свободное скатывание шарика по наклонной плоскости должно происходить по тем же законам, как и свободное падение. Скорость же скатывания можно сколько угодно уменьшить, изменяя угол наклона плоскости.

Пуская шарик по наклонной плоскости, можно было измерить время, необходимое шарику, чтобы скатиться до ее основания. Длина наклонной плоскости известна. Значит, можно было вычислить, каково ускорение скатывания по наклонной плоскости.

Для опытов Галилей взял доску длиной двенадцать локтей, конец которой был приподнят только на один-два локтя. Посередине доски был простроган узкий желоб, выстланный очень гладким пергаментом для уменьшения трения. По желобу скатывались бронзовые шарики, пускавшиеся Галилеем. Время измерялось водяными часами, то-есть по количеству воды, успевавшей вытечь из верхнего сосуда в нижний.

Сперва шарик был пущен с верхнего конца желоба. Когда он докатился вниз, Галилей заметил по водяным часам, сколько понадобилось ему на это времени.

По закону, выведенному теоретически Галилеем, расстояние, пройденное свободно падающим телом, увеличивается пропорционально квадрату времени. Следовательно, в четыре раза более короткий путь шарик должен пройти во вдвое более короткий промежуток времени. Пустив шарик с верхнего конца четвертой части длины желоба, Галилей убедился, что для этого расстояния шарику действительно понадобилось только вдвое меньше времени.

Опыт Галилея со скатыванием шариков по наклонной плоскости.

Так было доказано, что скатывание по наклонной плоскости подчиняется закону, выведенному для свободного падения. Значит, предположение Галилея, что ускорение свободного падения постоянно, справедливо.

Пользуясь наклонной плоскостью, можно было определить ускорение скатывания по ней. Для этого достаточно только заметить время, в течение которого шарик проходит всю ее длину.

Галилей хотел из этого опыта определить ускорение свободного падения. Он не знал, что вращение шарика очень усложняет эту задачу, которая могла быть решена таким путем только после открытия законов вращения тел.

Вот если бы можно было осуществить опыт скольжения тела без трения по наклонной плоскости, то такая задача не представила бы затруднений.

Допустим, что тело, скользящее по наклонной плоскости, прошло длину ее l за t секунд. Тогда l = at2/2, где a — ускорение скольжения.

Из закона наклонной плоскости следует, что сила, действующая вдоль нее, во столько раз меньше силы тяжести, во сколько высота ее меньше длины. Поэтому ускорение свободного падения легко было бы определить, зная ускорение скользящего тела.

Галилей изучал движение падающего тела кинематически, то-есть только с геометрической стороны. Он не принимал во внимание силы тяжести, сообщающей телам движение. Самое понятие о силе еще было неясным. Галилей часто называл причину, вызывающую движение, «импульсом» — слово, обозначающее в современной механике произведение силы на время (равное количеству движения). Но открытие кинематических законов движения падающих тел все-таки позволило Галилею решать практические задачи техники, например баллистики — науки о движении пушечных ядер.

<p>Проблема траектории брошенного тела</p>

Открытие законов свободного падения было началом динамики. Оно позволило немедленно же разрешить давнишнюю проблему о траектории пушечного ядра, которая имела важный практический характер.

Ядро вылетает из пушки под огромным давлением расширяющихся горячих газов. По выходе из ствола оно двигалось бы по инерции равномерно и прямолинейно, если бы его не притягивала Земля. Но как только оно покинет ствол пушки, притяжение Земли заставляет его падать.

Траектория брошенного тела определяется сложением поступательного движения и свободного падения.

Понятие о независимости движений было известно еще Аристотелю, указавшему правило их сложения: совершая движение в двух различных направлениях, тело движется по диагонали параллелограмма, построенного на скоростях этих движений.

Но почему ни Аристотель, ни его последователи не решили проблему траектории брошенного тела? Этому помешало их пренебрежение опытом: сложение движений они рассматривали только как геометрическую теорему. Но они не наблюдали движений физических тел и не знали, что реальные движения в действительности именно так и слагаются. Только поэтому аристотелианцы и могли утверждать, будто бы ядро сперва летит прямолинейно в направлении выстрела, а затем падает вертикально. Ошибочность этого мнения легко было доказать, бросив камень и наблюдая его движение.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука