Читаем О движении полностью

Открытие всемирного тяготения раскрыло механизм, управляющий движениями всех тел вселенной: от метеоритов и комет до звезд и галактик. Оно легло в основу «небесной механики», изучающей движение космических тел.

Но обаяние имени Декарта, ниспровергнувшего аристотелианство в механике, долго препятствовало признанию всемирного тяготения на континенте Европы. Французские ученые упорно держались взглядов Декарта. Только к началу 40-х годов XVIII века Ньютон был признан и во Франции. Но с той поры именно французы, а не англичане развивали в течение всего XVIII века учение Ньютона.

Одной из причин, задержавших распространение механики Ньютона, был примененный им геометрический метод доказательств.

Эти доказательства очень кратки и изящны. Но понимание их требует большого воображения. Говорили, будто во всей Англии в эпоху выхода в свет «Начал» Ньютона было не более десятка ученых, способных понять этот труд.

<p>Возникновение аналитической механики</p>

Изложив доказательства теорем механики геометрическим методом, Ньютон при их выводе иногда пользовался изобретенным им «исчислением флюксий». Одновременно с Ньютоном исчисление бесконечно малых было изобретено немецким философом и математиком Готфридом Вильгельмом Лейбницем (1646–1716). В XVIII веке анализ бесконечно малых был развит математиками континента Европы. Он получил широкое применение в механике и обеспечил быстрые успехи этой науки.

Аналитическое направление механики было создано главным образом трудами замечательного математика Леонарда Эйлера (1707–1783).

Молодой Эйлер готовился к духовному званию. Но уроки, которые он брал у известного математика Иоганна Бернулли, изменили его намерения. Эйлер ревностно взялся за изучение математики.

Эйлеру было только двадцать лет, когда его пригласили в Петербургскую Академию наук занять кафедру… физиологии. Он спешно взялся за изучение этой науки и принял предложение.

В день прибытия Эйлера в Петербург скончалась императрица Екатерина I, покровительствовавшая Академии наук. Некоторые академики решили уехать из России. Скоро кафедры физики и математики стали свободны.

Заняв в Академии наук кафедру математики, Эйлер проявил необыкновенные способности. Однажды понадобились астрономические таблицы, для вычисления которых математики требовали несколько месяцев. Эйлер взялся вычислить их в течение трех дней и сдержал слово.

Эта напряженная работа стоила Эйлеру, однако, очень дорого: вследствие переутомления он заболел и ослеп на один глаз. По выздоровлении Эйлер продолжал усиленно работать.

В первый период пребывания в России Эйлер написал и издал в 1736 году свой труд «Механика в аналитическом изложении», ставший началом нового направления в развитии этой науки.

Работы, изданные Петербургской Академией наук, доставили Эйлеру большую известность. Прусский король Фридрих Великий письмом из военного лагеря пригласил его в 1741 году в Берлинскую Академию наук. Эйлер принял предложение и поехал в Берлин, где прожил двадцать пять лет.

В этот, второй период своей жизни Эйлер издал больше сотни ценных математических трудов и работ по механике. В 1766 году Эйлер по приглашению императрицы Екатерины II снова возвратился в Россию и оставался в Петербурге до конца жизни.

В первый же год по возвращении в Петербург Эйлер потерял и второй глаз. Ему остались доступны только крупные меловые знаки на черной доске. Но Эйлер не уменьшил масштаба своей научной деятельности. Он продолжал выпускать математические труды, работая до последнего дня жизни.

Эйлер отказался от трудных геометрических выводов Ньютона. Он изучал движение аналитически, выражая зависимость между временем и положением материальной точки уравнениями.

Эйлер утверждал, что «всякое тело, которое передвигается в другое место… проходит через все средние места и не может из начального места перейти сразу в конечное».

Это значит, что в течение чрезвычайно короткого промежутка времени и положение тела изменится очень мало. Поэтому к изучению движения тела можно применить исчисление бесконечно малых величин.

При геометрическом методе логическое рассуждение связано с проводимыми линиями и плоскостями, которые нужно начертить. Аналитический же метод заключается в операциях с математическими знаками, не связанными с наглядными представлениями. Он дает возможность легко производить сложные операции, недоступные для геометрического способа.

Введение Эйлером аналитического метода в механику лишило ее наглядности, которую давал геометрический метод Галилея, Гюйгенса и Ньютона, но зато аналитический метод способствовал быстрому развитию этой науки.

<p>Законы вращения тел</p>

Изучая обращение планет, можно было принимать их за материальные точки — так малы их размеры по сравнению с космическими расстояниями.

Но как движутся части машин? Какие усилия возникают в них при работе?

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука