Но если снять крышку подшипника, то связь становится односторонней, или неудерживающей. Такие подшипники применяются для тяжелых водяных колес и ветряков. Подшипник без крышки не препятствует поднятию вала, удерживаемого на месте только тяжестью колеса.
Лагранж и все механики XVIII века считали, что начало возможных перемещений приложимо только к двусторонним связям. Они не применили бы это условие равновесия к водяному колесу с подшипниками без крышек.
М. В. Остроградский распространил начало возможных перемещений и на односторонние связи. Он доказал, что в этом случае для равновесия необходимо, чтобы возможная работа всех приложенных к телу сил была меньше или равна нулю (возможность отрицательной работы объясняется, конечно, тем, что движению приписывается знак в зависимости от направления).
Независимо от своего современника — английского физика Вильяма Гамильтона (1805–1865), М. В. Остроградский ввел в механику так называемый принцип наименьшего действия. Это один из важнейших законов механики. Он гласит, что при свободном перемещении тел из одного положения в другое движение происходит так, что работа сил имеет наименьшую величину.
Зарождение этого принципа в виде философской мысли, будто природа «стремится» к тому, чтобы все действия совершались с наименьшей затратой энергии (или, как говорили тогда, силы), относится к давним временам. В XVII веке такая идея была высказана французским математиком Пьером Ферма (1601–1665), сумевшим применить ее к выводу закона преломления света.
Ферма предположил, что распространение света в воде и стекле встречает большее сопротивление, чем в воздухе. Он стал искать, по какому пути должен идти луч света, чтобы общее сопротивление в обеих средах (воздух — стекло) вместе было наименьшим. Понятно, Что такой путь луч пройдет и в наикратчайшее время.
Оказалось, что для этого при переходе в более плотную среду луч должен преломиться, приблизившись к перпендикуляру, восстановленному в точке его падения к поверхности раздела. Отклонение должно быть таким, чтобы отношение синусов угла падения и преломления было равно отношению скоростей в двух средах.
Однако принцип наименьшего действия оставался отвлеченным и не мог быть признан физическим законом.
Впоследствии начало наименьшего действия получило обоснование и развитие в работах Эйлера, который показал, что этот принцип соблюдается и в движении тел под действием центральных сил, например планет.
Наконец Остроградский и Гамильтон, независимо друг от друга, придали этому принципу окончательную форму закона механики.
В тесной связи с исследованиями в механике стояли и математические работы М. В. Остроградского.
Этот замечательный русский математик развил так называемое вариационное исчисление, главнейшая задача которого — отыскание наибольшего и наименьшего значения различных величин. Примером вопросов, решаемых с помощью этого исчисления, может служить следующий: найти кривую, двигаясь по которой под действием тяжести тело пришло бы в кратчайшее время из одной точки над земной поверхностью в другую.
М. В. Остроградский исследовал и проблемы баллистики — науки о движении снаряда. Он работал и в области небесной механики, дав новые доказательства некоторым из ее теорем.
Работы М. В. Остроградского были большим шагом вперед в аналитической механике и математике. Они прославили имя этого замечательного русского ученого, и Парижская Академия наук избрала его своим членом-корреспондентом.
Значительные успехи в динамике вращающегося тела были достигнуты благодаря работам русского математика С. В. Ковалевской (1850–1891).
Дочь генерала-артиллериста, С. В. Ковалевская получила хорошее образование. Еще в раннем возрасте она проявила замечательные математические способности. Пятнадцати лет С. В. Ковалевская уже брала уроки высшей математики в Москве. Через несколько лет она училась у одного из известнейших математиков Германии, Вейерштрасса, и слушала лекции знаменитого физика Гельмгольца.
По представлению Вейерштрасса, Геттингенский университет присудил С. В. Ковалевской за три математические работы ученую степень доктора без установленных для этого экзаменов.
В одной из этих работ С. В. Ковалевская исследовала вопрос о кольце Сатурна, развивая идеи знаменитого французского математика Пьера Лапласа (1749–1827), изложенные им в труде «Небесная механика».
По возвращении в Россию С. В. Ковалевская не могла бы в те времена найти большего приложения своих математических познаний, чем преподавание арифметики в младших классах гимназии.
Просьба С. В. Ковалевской допустить ее к сдаче экзаменов на степень магистра при Московском университете была отклонена. Тогда С. В. Ковалевская решила покинуть Россию и вернулась в Берлин.
В 1883 году С. В. Ковалевская получила приглашение читать лекции по математике в Стокгольмском университете. Она уехала в Швецию, где прочитала двенадцать курсов по разным отделам математики.
Александр Амелин , Андрей Александрович Келейников , Илья Валерьевич Мельников , Лев Петрович Голосницкий , Николай Александрович Петров
Биографии и Мемуары / Биология, биофизика, биохимия / Самосовершенствование / Эзотерика, эзотерическая литература / Биология / Образование и наука / Документальное