Читаем О движении полностью

Но если снять крышку подшипника, то связь становится односторонней, или неудерживающей. Такие подшипники применяются для тяжелых водяных колес и ветряков. Подшипник без крышки не препятствует поднятию вала, удерживаемого на месте только тяжестью колеса.

Лагранж и все механики XVIII века считали, что начало возможных перемещений приложимо только к двусторонним связям. Они не применили бы это условие равновесия к водяному колесу с подшипниками без крышек.

М. В. Остроградский распространил начало возможных перемещений и на односторонние связи. Он доказал, что в этом случае для равновесия необходимо, чтобы возможная работа всех приложенных к телу сил была меньше или равна нулю (возможность отрицательной работы объясняется, конечно, тем, что движению приписывается знак в зависимости от направления).

Независимо от своего современника — английского физика Вильяма Гамильтона (1805–1865), М. В. Остроградский ввел в механику так называемый принцип наименьшего действия. Это один из важнейших законов механики. Он гласит, что при свободном перемещении тел из одного положения в другое движение происходит так, что работа сил имеет наименьшую величину.

Зарождение этого принципа в виде философской мысли, будто природа «стремится» к тому, чтобы все действия совершались с наименьшей затратой энергии (или, как говорили тогда, силы), относится к давним временам. В XVII веке такая идея была высказана французским математиком Пьером Ферма (1601–1665), сумевшим применить ее к выводу закона преломления света.

Ферма предположил, что распространение света в воде и стекле встречает большее сопротивление, чем в воздухе. Он стал искать, по какому пути должен идти луч света, чтобы общее сопротивление в обеих средах (воздух — стекло) вместе было наименьшим. Понятно, Что такой путь луч пройдет и в наикратчайшее время.

Оказалось, что для этого при переходе в более плотную среду луч должен преломиться, приблизившись к перпендикуляру, восстановленному в точке его падения к поверхности раздела. Отклонение должно быть таким, чтобы отношение синусов угла падения и преломления было равно отношению скоростей в двух средах.

Однако принцип наименьшего действия оставался отвлеченным и не мог быть признан физическим законом.

Впоследствии начало наименьшего действия получило обоснование и развитие в работах Эйлера, который показал, что этот принцип соблюдается и в движении тел под действием центральных сил, например планет.

Наконец Остроградский и Гамильтон, независимо друг от друга, придали этому принципу окончательную форму закона механики.

В тесной связи с исследованиями в механике стояли и математические работы М. В. Остроградского.

Этот замечательный русский математик развил так называемое вариационное исчисление, главнейшая задача которого — отыскание наибольшего и наименьшего значения различных величин. Примером вопросов, решаемых с помощью этого исчисления, может служить следующий: найти кривую, двигаясь по которой под действием тяжести тело пришло бы в кратчайшее время из одной точки над земной поверхностью в другую.

М. В. Остроградский исследовал и проблемы баллистики — науки о движении снаряда. Он работал и в области небесной механики, дав новые доказательства некоторым из ее теорем.

Работы М. В. Остроградского были большим шагом вперед в аналитической механике и математике. Они прославили имя этого замечательного русского ученого, и Парижская Академия наук избрала его своим членом-корреспондентом.

Значительные успехи в динамике вращающегося тела были достигнуты благодаря работам русского математика С. В. Ковалевской (1850–1891).

Дочь генерала-артиллериста, С. В. Ковалевская получила хорошее образование. Еще в раннем возрасте она проявила замечательные математические способности. Пятнадцати лет С. В. Ковалевская уже брала уроки высшей математики в Москве. Через несколько лет она училась у одного из известнейших математиков Германии, Вейерштрасса, и слушала лекции знаменитого физика Гельмгольца.

По представлению Вейерштрасса, Геттингенский университет присудил С. В. Ковалевской за три математические работы ученую степень доктора без установленных для этого экзаменов.

В одной из этих работ С. В. Ковалевская исследовала вопрос о кольце Сатурна, развивая идеи знаменитого французского математика Пьера Лапласа (1749–1827), изложенные им в труде «Небесная механика».

По возвращении в Россию С. В. Ковалевская не могла бы в те времена найти большего приложения своих математических познаний, чем преподавание арифметики в младших классах гимназии.

Просьба С. В. Ковалевской допустить ее к сдаче экзаменов на степень магистра при Московском университете была отклонена. Тогда С. В. Ковалевская решила покинуть Россию и вернулась в Берлин.

В 1883 году С. В. Ковалевская получила приглашение читать лекции по математике в Стокгольмском университете. Она уехала в Швецию, где прочитала двенадцать курсов по разным отделам математики.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука