Но как раз от этого различения и отказывается XVII столетие. Речь идет именно о введении новой метафизики. Речь не идет о каком-то эмпирическом факте, который кто-то когда-то открыл и увидел: ведь увидеть эти бесконечно малые нельзя ни в какой микроскоп. Лейбниц, как мы уже отмечали, отлично понимает этот метафизический характер нового постулата. Еще одна цитата: в одном письме к Мальбраншу, говоря о путях промысла Божия, Лейбниц пишет: «В сущности ничто не является для Него безразличным, и ни одна тварь и ни одно действие твари не считаются у Него ничтожными, хотя в сравнении с Ним они почти ничто. Свои взаимоотношения они сохраняют и перед Ним, подобно тому как линии, которые мы рассматриваем как бесконечно малые, имеют практически важные соотношения, несмотря на то что в сравнении с обычными линиями они кажутся ничтожными. Кажется, я уже пользовался этим сравнением»[33]
. Сравнение любопытно. На первый взгляд здесь ставятся в параллель отношения Бога к твари и отношение обычных линий к бесконечно малым. Хотя несколько странно, что Бог уподобляется «обычной линии»… В то же время говорится: «линии, которые мы рассматриваем как бесконечно малые».С ней уже в XVII веке было много несогласных. Декарт так и не принял метода бесконечно малых. Известны острые инвективы Беркли против геометрических построений в бесконечно малых треугольниках и точках. С критикой использования актуальной бесконечности выступали Б. Паскаль и А. Арно[34]
. И действительно, ведь если метод дифференциального исчисления держится на вышеупомянутом постулате[35], а последний есть только достаточно произвольное положение (мы не столько знаем, что так есть, сколько