Читаем О науке полностью

В итоге общие свойства газов легко объяснялись таким способом, но на пути детального описания оставалось достаточно трудностей, которые ставили в тупик некоторых ученых и заставляли задуматься, не является ли достигнутое объяснение весьма упрощенным. Исследование растворов, например водного раствора соли, привело к неожиданному сопоставлению. Было установлено, что растворенные в воде молекулы соли ведут себя в стакане воды аналогично молекулам газа, наполняющего закрытый сосуд, — т. е. подобно рою мошкары, попавшей в зал. Совпадения в количественном описании обоих явлений не могли быть отнесены к случайности и их можно было уже рассматривать как подтверждение существования молекул, но следует отметить, что все еще не удалось увидеть молекулы соли, как и молекулы газа, из-за малости их размеров.

Уже довольно давно один натуралист рассматривал в микроскоп органические жидкости и увидел в них частицы, подверженные беспорядочным и очень быстрым движениям. Такое явление было названо броуновским движением. Этот исследователь считал, что имеет дело с живыми существами. Но вскоре было замечено, что инертные частицы, например пылинки краски кармина, ведут себя с не меньшим пылом. Натуралисты уклонились от объяснения этого явления, считая это делом физиков. В свою очередь физики не считали нужным изучать его. Эти натуралисты, говорили они уверенно, не умеют рассуждать и делать выводы. Они же сильно освещают свой препарат в микроскопе, а освещая его, они его нагревают, и тепло вызывает в жидкости нерегулярные течения. Но, наконец, Гуи решил рассмотреть это явление. Его результат не имел ничего общего с прежними мнениями. Это было совершенно новое явление. Видимые частицы совершают движения, и с первого взгляда можно подумать, что они не находятся под действием какой-либо движущей силы и что налицо вечное движение. В действительности же именно столкновения невидимых молекул раствора с видимыми частицами приводят их в движение. Так вот, если мы вернемся к нашей мошкаре (хотя наши глаза недостаточно хороши, чтобы ее видеть) и если среди нее находятся несколько больших мух, то мы могли бы наблюдать их движения и делать выводы о движениях мошкары в случае, если эти мухи не меняют свой путь движения по своему намерению так, чтобы догнать или разминуться с теми насекомыми, которые невидимы для нас из-за малости их размеров.

И все же на сей раз их увидели и я хотел бы пояснить вам, каким способом сосчитали число молекул. Теория учит нас, что вследствие непрекращающихся столкновений скорости молекул перераспределяются до достижения некоторого усредненного распределения этих скоростей, которое затем сохраняется бесконечно долго. В том распределении большие молекулы движутся менее быстро по сравнению с малыми, поскольку выполняется условие равенства в среднем для движущей силы у молекул любых размеров. А видимые нами частицы, испытывающие броуновское движение, — наши большие мухи — это на самом деле очень большие молекулы. Мы знаем их скорость по наблюдениям их движений и мы знаем их размеры, ибо видим их. С другой стороны, теория обеспечивает нам значения скоростей малых молекул, и поскольку движущая сила одних должна быть такой же, как и у других, то известное правило дает нам массу малых молекул, собственно говоря, просто молекул.

Перрен подошел к этой задаче, используя несколько иной метод. Возьмем для примера земную атмосферу. По мере подъема вверх давление и плотность воздуха в ней уменьшаются, температура также уменьшается. Однако во всех последующих рассуждениях мы будем предполагать, что в результате некоторого процесса нагревания в атмосфере поддерживается одинаковая и постоянная температура. Вы хорошо понимаете, что с помощью элементарных законов физики очень легко представить себе поведение этой условной атмосферы с поддерживаемой в ней постоянной температурой, не обращая внимания на то, что наша реальная атмосфера ведет себя совершенно иначе. Если нашу атмосферу, рассматриваемую при постоянной температуре, полагать состоящей из водорода, то ее плотность будет падать медленнее, ибо молекулы водорода имеют значительно меньшие размеры, чем молекулы кислорода или азота. Размеры же атмосферы из водорода возрастают в соответствующей пропорции, но они, напротив, уменьшились бы в случае атмосферы из более тяжелых, чем у кислорода и азота, молекул. Так вот, возьмем видимые глазом частицы — «большие мухи» и рассмотрим их как броуновские частицы, находящиеся во взвешенном состоянии в воде, — таким образом мы получим некую атмосферу в миниатюре, которую мы можем изучать и которая имеет постоянную температуру, поскольку она погружена в воду. Сравнивая ее с атмосферой из водорода при такой же температуре, мы установим пропорциональность между ними, т. е. определим, во сколько раз взятые нами частицы массивнее молекул водорода.

Перейти на страницу:

Похожие книги